
____ ‘ I
_

I I

END
DATE

Ffl~ A ~

I 80
DCC

I~~~~~8
~~~

_ _  

2.2

I. ’ ~ OO~0

IIIII~lull ‘ .25 

~ uni~
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU 01 sTANOA RDS-1963-A



i tilti ‘

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. R EPORT NUM8ER — J~ Qy~r ~~~~~~ 3. RECIPIENT S CATALOG NUMBER
A. I. Memo 520 JI~/ 

~~~ 
-

4. T ITLE (and Subt i t le) 5. TYPE OF REPORT & PERIOD COVERED

(Learning by Understanding Analogies 7 ~
)j ~iemorandum _/

~~t
’
~ /

-~
S. PCRFO~~MING O~~6. ~ EPORr NUMBER

7. ~AUT.~tO.Rf..)— — . •
~~~~~~~~~~~~ • - CQ$T*ACX-a.*-GRAMXkUM BER(.)

Patrick H./ Winston ,~~~~ NOOO14—75—C—O643~r
~~~—‘ N00014—77--C—0389

~~ / - ..__

~~~~~ 9. PERFORMING O R G A N I Z A T I O N  NAM E AND ADD RESS 10. PROGRAM~EL~EUENT. PROJECT. TASK
Ar tificial Intelligence Laboratory , ‘~L _~~~ NhT E~

545 Technology Square 
~ / 

— 7 ~/ /Cambr i dge, Massachusetts 02139 ~ ‘
II . CONTROLLING OFFI CE NAME AND ADDRESS 12. REPORT OATE

Advanced Research Projects Agency 
~ ______________________________j \. 1400 Wilson Blvd I’ ’~~ 1/  u. NUMBER OF PAGES

Ar ling ton, Virginia 22209
14. MONITORING AGENCY NAME & ADORESS (fl dIfl.r.& from Co,,troflffi ~ 0u Sd ) IS. SECURITY CLASS. (of l~i.  r.port1

~~~ Office of Naval Research UNCLASSIFIED
Informa tion Systems ______________________________
Arling ton, Vir ginia 22217 ISa.

~~~ k~~~~~
IcATI oN/oowNGRAoINo

IS. DISTRIBUTION STATEMENT (ol thS. Report)

Dis tribution of this document is unlimited .

~~C 13 1919
Il. DISTR IB UTION STATEMENT (ol IA. ab.tr.cl .nS. ,.d Sn Block 20, ii dIff.r.n I frog~ Report)

LbU 1i1~
_ _ _ _ _ _ _ _ _ _ _ _  

p
I!. SUPPLEMENTARY NOTES

LU None
-~~~

LJ 4
19. KEY WORDS (Contff iu. on r.v.r.. .td. U n.c.a. 7 id ld.nf Sty by block nuatb.r)

Learning

R 
Artificial Intelligence
Analogies 1~ ~~~~,

•

20. ABST RACT (Continu, on ran .,.. .td. U n•c•s~aIy id IdUnUIy by block ni tb.t~)

We use analogy when we say something is a Cinderella story and when we learn
about resistors by thinking about water pipes. Experts use analogy when
they learn Economics, Medicine, and Law. This paper presents a theory of
analogy and describes an implemented system that embodies the theory. The
specific competence to be understood Is that of using analogies to deal with
an unfamiliar situation. A teacher may supply the analogy or may not. The
analogy may be between situations in a single domain or between situations
in very different domains. Frames represent the situations. Relations are

DD I~~~
Z’

~~ 
1473 EDITION 0F I NOV SS I$ OSSOLE1E UNCLASSIFIED 

~
‘/  /4” ~~ 

.‘

S/N 0102-01 4 •  660 1 I
SECURITY CL. ASSIPICATION OF THIS PAGE (USSio D.ia t.5.e.4)



-. ~~~~~~ . 
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.. -

.

20. expressed in a way that is reminiscent of the case—gra ar view of simple
sentences. The essential computations tie pairs of frame—described situations
together and make knowledge about one become knowledge about the other.

Accesei~~ Po~
WZI~ ~~MI
IFC~~L8
lk~~mouAced
Jt stificatio~~~~

By_ _ _ _ _ _

Distribution/

AvailoblAity CoOS
Avail and/or

DiBt . spec ial

_ _ _ _ _  

,. ~~



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

AIM 520 April 1979
Revised June 1979

LEARN ING BY UNDER STAN DING ANALOGIES

by

Patrick H. Winston

Abstract

We use analogy when we say something is a Cinderella story and when we learn
about resistors by thinking about water pipes. Experts use analogy when they
learn Economics, Medicine, and~ Law.

This paper presents a theory of analogy and describes an implemented
system that embodies the theory. The specific competence to be understood is
that of using analogies to deal with an unfamiliar situation. A teacher may
supply the analogy or may not. The analogy may be between situations in a
single S domain or between situations in very different domains.

F~rames represent the situations. Relations are expressed in a way that is
reminiscent of the case-grammar view of simple sentences. The essential
computations tie pairs of frame~described situations together and make knowledge
about one become knowledge about the other. ,—

This paper describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s art ifici al
intelligence research is provided in part by the Office of Naval Research under
Contract N00014-77.C.0389 and in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract
N00014.75.C.0643.

~ A



ANALOGY

Much at thinking is by analogy. We face a situation , we recall a similar
situation, we match the. up, we draw conclusions, we test the conclusions.
We do all of this when we say something is a Cinderella story and when we
learn about resistors by thinking about water pipes. Experts do it when
they analyze situations in Economics, Medicine, and Law. Indeed, the
experts often learn their specialties by the case study method.

This paper presents a theory of analogy snd describes an
implemented system that embodies the theory. The paper begins with a
description of the competence to be understood and a discussion of the
representation that seems best suited to dealing with the competence. Then
the competence and the representation are used to specify certain
computations. And finally, specific, implemented algorithms are presented
that perform the computations.

Briefly, the competence to be understood is that of using analogies
to deal with an unfamiliar situation. A teacher may supply the analogy or
may not. The analogy may be between situations in a single domain or
between situations in very different domains. The theory explains the
competence when the individual situations involved in an analogy are
subject to certain principles :

•1 Symbolic suffIciency. A situation can be described by using a
4 repertoire of types, features, and relations that is finite.

although it may be large.

I Description-determinined similarity. A situation is similar to
another if the important types, features , and relations in their
descriptions can be placed in correspondence.

• Cause-determined Importance. The important types, features, and
relations of a situation are the ones explicitly said to be
important by some teacher or implicitly known to be important by
being involved in causal relationships .

• Historical continuity. A situation that is similar to a past
situation generally leads to similar results or conclusions.

Given these points, it would seem that any system for doing analogy must
use a powerful representation scheme together with mechanisms that propose
potential analogies, match allegedly analogous situations, suggest
conclusions, and test to see if conclusions are supportable. The
implemented system has all of these. In particular it has the following:



Patrick H. Winston 2 . Introduction

I Commented-frames representation. Situations are represented using
frame-slot-’ialue triples that stress the most important parts of a
relation . Comuents attached to the triples facilitate elaboration .
The idea is reminiscent of the way agents end objects dominate
simple sentences. The agents and objects appear without flagging
prepositions , while other things do not get the same status.

• Classification-exploIting hypothesizing. Memory is searched for
situations that are likely to be similar to a new, given situation
because the remembered situations involve the same sorts of things
at some level of abstraction.

• Cause-dominated aiatching. The similarity between two situations
is measured by finding the best possible correspondence according
to the causal framework e,thibited by the situations themselves.

• Frame-oriented rules. Conclusions about a given situation are
reached by using knowledge found in a similar situation. Sets of
frame-slot-value triples trigger the rules, which then create new
frame-slot-value triples.

• Experience-driven verification. A conclusion is tested by using the 3causal chains found in the remembered situation that suggested the
cbnclus ion.

Figure 1 illustrates. The actual implementation is based on primitives
resembling those in the frame-oriented language FRL, implemented in LISP by
Bruce Roberts (12 , 13).

THE COMPETENCE TO BE UNDERSTOOD

More concretely, the sort of competences I have in mind are suggested by
the following:

• A story outline is given in terms of 40 or 50 facts. It appears
reminiscent of several of Shakespeare’s tragedies.

• Analysis suggests that it is most like Macbeth .

I On the basis of the similarity, it is predicted that the person
that corresponds to Macbeth will end up dead .

• Workinci more, questions are asked to determine if the predicted
outcome really makes sense. Does the person that corresponds to
Lady Macbeth persuade the Macbeth person to murder the Doncan



S

cLASSIFICATION-EXPLOITING HYPOThESIZER
V

.

CAUSE-DOMINATED MATCHER

1
FRANE-ORIENTED RULE SYSTEM

1
EXPERIENCE-DRIVEN VERIFIER

H (

Figure 1: The keys to analogy. The first job is to find some remembered
situation that may apply. Next, the hypotheses are checked using a matcher
that relies heavily on what causes what. The best match leads to
conclusions by way of rules that trigger on the existence of situation-
defining frame-slot-value combinations. Conclusions are checked by
determining if causes found in the remembered situation can be found in the
new one or otherwise confirmed .

C
~

~ 
—



Patrick H. Winston 4 Competence

person?

Simple legal situations work the sane way:

I The case of Smith versus Wesson establishes a precedent for assault
cases. Smith pointed a rifle at Wesson to frighten him. The rifle
was not loaded, and it was therefore harmless. It is held that an
assault has taken place even though the rifle was not loaded
because Wesson did not know it.

• Subsequently, Smith versus Wesson is retrieved when the case of
Villain versus Victim is considered. Villain pointed a pistol at
Victim in order to frighten him . The pistol was harmless toy. It
is asked if Victim knew that the pistol was harmless.

Analogi9s involving calculation are part of the sane story:

I A teacher tells a student that the voltage across a resistor can be
calculated by thinking about the water pressure across a length of
pipe . The student correctly finds the voltage without knowing
Ohm ’s law .

I A teacher tells a student the exports and imports of wheat in a
certain year affect the supply in that year in the same way the
faucet and drain rates affect the amount of water in a bathtub.
The student calculates the wheat supply at the end of the year .

Practice with some specific instances enables the invention of specific
laws :

• The teacher instructs the student in two different voltage—
resistance-current situations and tells tJ~e student to formulate a
law. The student invents Ohm ’s law.

Once several forms of the sane sort of constraint are known, it is possible
to generalize:

• The teacher suggests generalizing from the water-pipe law and Ohm’s
law. The student formulates a linear constraint that involves
forces and flows.

I propose that the ability to do this kind of learning is related to the
ability to understand the relatiqnship between specific instances and
applicable constraints as illustrated by these examples:

I The voltage across a particular resistor is calculated by reference
to Ohm ’s law.



Patrick H. Winston S Competence

I
I The amount of wheat after a period is calculated using the import—

export law.

All of these examples, from Macbeth to Ohm ’s law , have been handled
successfully in a series of experiments using an implemented system.

The experiments seemed successful, subjectively, because the system
reached justifiable, human-like.conclusions. A person could reach the same
conclusions without seeming particularly eccentric.

There are Precedents in Previous Work

From time to time it may be useful to make comparisons with my previous
learning systems inasmuch as the roots of this one go back to the earlier
ones. Let us call the first one ARCH (18] and the second FOX (19] after
the typical things involved .

In addition , many of the ideas in this paper were influenced by
other precedents. In particular, Schank (15], Wilks (17], and others
stimulated work on the problem of how thinking is determined by stored
experience . Evans (3] and Brown (1] broke ground on certain special forms
of the analogy problem. Minsky (8], and Goldstein and Roberts (12, 13]
worked out key ideas on representation. Martin (6] and Rieger (11] brought
attention to the need for hard work on the details of vocabulary. And
Lenat’s success with his mathematical discovery system provoked renewed
interest in the entire area of computer learning (5).

REPRESENTING SITUATIONS USING COMMENTED-FRAMES

A representation is a vocabulary of symbols together with some conventions
for arranging them. A good representation is one that has the following
characteristics:

• It makes the important facts explicit.

• It is clear that it can be computed.

I It is simple.

In this section, a particular representation using frames will be
explained . Alternatives will be dismissed, and the importance of cause
relations will be emphasized.

;. (

F,... ~ ~~~~~ - - - —. .. ‘ . -_.____ %-,_.



Patrick H. Winston 6 Representation

Frames can be used to Describe Situations by way of Commented Slots

In describing both stories and constraints , binary relations are clearly
important. There must be a clean way of saying that Cinderella kisses
Prince Charming and that some particular voltage, V. is proportional to a
certain current , I.

Using the familiar property-list idea is nearly enough. The
symbols CINDERELLA and V would have lists of property-value pairs attached
to them . The property list of CINDERELLA would have KISS combined with
CHARMING , the symbol representing Prince Charming. The one for V would
include a PROPORTIONAL-TO property with an I value.

A property-list representation is not enough, however. The
relationship between Cinderella and Prince Charming is really something
about which more could be said. The relationship between voltage and
current is really a ternary relationship involving resistance. There is no
room in the property-list representation to express these things
comfortably. There is room in the frames representation .

For my purpose here , a frame can be thought of as a generalized
property list. In the local MIT vernacular , the properties of a frame are
called slots. Each slot can have a number of subdivisions called facets.
One often-used facet is the value facet. Translating a property-list
description into a frame description means stuffing property values into
value facets, leaving all other facets unused . Here are two sample frames:

(V (PROPORTIONAL-TO (VALUE (I))))

(CINDERELLA (KISS (VALUE (CHARMING))))

The frames are CINDERELLA and V. The slots are KISS and PROPORTIONAL-TO.
And the values in the VALUE facet are CHARMING and I. Putting these down in
the form of nested list structure is a habit that derives from working with
a LISP-based implementation .

Since only the VALUE facet will be used for the moment, the
notation for a frame often will be abbreviated by omitting the facet part,
as in the following:

(V (PROPORTIONAL-TO (I)))

(CINDERELLA (KISS (CHARMING)))

The other facets are used to hold default values or demon-like procedures
to be executed as values are placed in a slot, removed, or sought.

Each value in a frame can be accompanied by comments. Coaments are
shown by way of additional nesting.



Patrick H. Winston 7 Repre sentation

(V (PROPORTIONAL-TO (I (SEE (PROPORTIONAL-TO-62)))))

(CINDERELLA (KISS (CHARMING (SEE (KISS-Cl)))))

In standard practice , comments are often used to record where a
value came from. In this work on analogy, comments assume additional
importance because they provide a means for breaking out of the too-strong
orientation of property lists toward binary relations. in the examples,
PROPORTIONAL-TO—62 and KISS-Cl are frames that further describe frame-slot-
value combinations:

(PROPORTIONAL-TO-62 (MULTIPLIER (R)))

(KISS-Cl (TIME (END)))

Thus it is possible to say a lot about a relation or an act. In
particular, in describing a simple act, it is possible to specify all of
the objects involved in the action using a vocabulary of slot names
something like the vocabulary of cases typically used in a case grammar
(4]. For example , in the sentence Prince Charming found Cinderella with
her glass slipper ,1 FIND is the act, CHARMING is the agent of the act,
Cinderella is the object, and Cinderella ’s glass slipper is the instrument.
Consequently translating the sentence into frames produces the following:

(CHARMING (FIND (CINDERELLA (SEE FIND-C!))))

(FIND-Cl (INSTRUMENT (SLIPPER-Cl)))

(SLIPPER-Cl (AXO (SHOE) (PROP))
(RAW-MATERIAL (GLASS))
(OWNER (CINDERELLA)))

Where AKO = A-Kind-Of and CI = suffix used in Cinderella to avoid naming
conflicts .

Certainly~ the agent and the object are emphasized by this way of
representing acts just as they are in ordinary active English sentences by
position constraint and the lack of case-indicating prepositions. Still,
the other participants in an act, such as the instrument, can be easily
noted as necessary in the act’s comment frame.

There are A Iternati yes to Commented Frame-dot-value Combinations

The idea of representing relations as commented frame—slot—value
combinations was suggested to me by Roberts. Several alternatives were
then rejected. They are described in note 1. All notes are in Appendix 1.



Patrick H. Winston 8 Representat Ion

It is Convenient to have an Input Language and Demons

In working with many eximples , it is good to have an easily readable way of
preparing frames. Note 2 gives the transition network that describes the
input translator currently used . The following version of the CINDERELLA
frames illustrates the input form that the translator accepts. Note the
use of AKO, meaning A-Kind-Of , and HQ, meaning Has-Quality. These are the
only slot abbreviations used in this and other examples.

CI is ako story - part Charming Cinderella.

Charming is ako prince. Cinderella is ako woman .

Charming has job entertaining - hq brave and strong - loves
Cinderella. Cinderella has job cleaning - hq beautiful.

Charming persuade Cinderella (see persuade-ci]. Cinderella

I. kiss Charming (see kiss-ci].

Persuade-ci act kiss-ci. Kiss-ci time end.

Where AKO = A-Kind-Of and HQ = Has-Quality.

With more complicated stories, it is usually necessary to start with a
diagram , such as the one in figure 2, in order to keep things straight.

Additionally, it is good to have obvious inferences made on input,
reducing the need for tedious attention to details. For example, when
Cinderella marries Prince Charming, it is clear that Prince Charming
marries Cinderella and that each is married to the other . Similarly when
one person kills another , it is clear that the killed person is dead.

Using if-added demons is the way to do this. If-added demons are
procedures that are automatically invoked when a slot is filled . In
Roberts ’ FRL , these procedures are stored in the IF-ADDED facet of the slot
they are relevant to and they are inherited through P1(0 chains. In my own
private implementation , I prefer to put them in a frame describing the
slot. Thus I specify if-added demons, for example, for MARRY and KILL. In
these demons, FRAME , SLOT, and VALUE are variables whose values are
automatically assigned by the basic value-insertion function for use by any
if-added demons that are triggered:



ci women
entertaining 

~~~~~~~~~~~~~~~~~~~~~ 

cleaning

brave ~~~~~~~~ Charming —

persuade ç ~~~~~~ Cinderella ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ beautiful

end

strong act

prince ~ — persuade-cl

Figure 2: Doing a story usually starts with preparing a diagram. Each
comment frame is connected to the arrow of the relation that is further
described by the comment.

(F

Patrick H. Winston 10 Representation

MARRY has if-added (FPFSV FRAME ‘MARRIED-TO VALUE).

KILL has if -added
(FPF SVCV VALUE ‘HQ ‘DEAD

‘BECAUSE (LIST FRAME ‘KILL VALUE)).

Where FFFSV = F-Put-Frame-Slot-Value and
FPFSVC = F-Put-Frame-Slot-Value-Comment-Value

The demon on the slot INVERSE is more complicated perhaps. It arranges for
the inverse of a relationship to be asserted if the relationship is:

INVERSE has if-added
(fpfsv value ‘inverse frame)
(fpfsv frame ‘if-added

(list ‘fptsv ‘value (list ‘quote value) ‘frame)) .

In the end , demons prove so important to the analogy process that there has
to be some concern about whether they can be learned. In fact they can.
Later, the following will be argued:

I Using a demon is just doing an analogy in miniature. The ideas
that make it possible to accwaulate big chunks of experience are
the same as the ideas that explain how it is possible to remember
cause-effect relationships at the level of demons.

Capturing Story Plots Requires Attention to Cause

Using commented frames , a dozen story plots were set down . The purpose was
to discover if the representation is adequate as a way of arranging symbols
and to work out a sample vocabulary of symbols.

The stories include four of Shakespeare ’s tragedies, two plays by
Ibsen , and some random things, all selected by thumbing through an
encyclopedia of plots.

For the most part , things seemed to work out, leading to the
results in the Appendix 2 and to the following observations:

• A few basic English words adequately supplied by far the bulk of
those needed for slot names and classes. Most of the ones I use
are in Ogden ’s thousand-word Basic English vocabulary (10] and in
the first thousand ‘or two most frequent English words (2].

~~~~~~ 

,



Patrick H. Winston 11 Representation

• Time is tricky. In the examples time is represented in two ways.
First, time is represented explicitly by using scene frames as the
value in TIME slots. Second, time is represented implicitly by way
of CAUSE slots.

I Cause is •tricky too .

To handle cause , the following conventions were honored, with seeming
success :

• The CAUSE and PREVENT slots can occur in any frame.

I Acts or relations are caused or prevented. People are not.
Consequently a comment frame is the only thing that can be in a
CAUSE or PREVENT slot. The inverses of CAUSE and PREVENT are
CAUSED-BY and PREVENTED-BY . The REASON, MOTIVE , and DESIRE slots
are closely related to CAUSED-BY .

Here is an illustrative fra~~ent from Appendix 2:

Katharina hq masochist (see hq-ta] - love Petruchio (see love-ta].
Hg-ta cause love-ta .

I People can be ordered to do something or forbidden to do something.
• Thus the ORDER and ~ RBID slots have people in them. Comment

frames describing s~.ecific instances of ordering and forbidding can
specify the acts involved by way of an ACT slot.

I A comment frame describing a specific instance of a cause may
specify a method by way of a METHOD slot. Popular occupants of the
METHOD slot are comment frames referring to specific instances of
ORDER or FORBID slots.

The following, from Hamlet, illustrates: Hamlet kill Claudius
(see kill-ha]. Ghost cause kill-ha (see cause-ha]. Cause-ha
method order-ha . Ghost order Hamlet (see order-ha]. Order-ha act

• kill-ha.

I People can be persuaded to do something or that something is true.
Thus PERSUADE slots have people in them. Their comments can have
an ACT slot, specifying something to do, or - a RELAT ION slot,
specifying something to believe. Their comments also can have a
METHOD slot. The METHOD slot describing a cause may specify an
instance of a persuade relation . The SUGGEST slot behaves mUch
like PLRSUADE .

Consider this:

• ~~~~ v~~~~~~~ 1~~~~~~.• ~~~~~



Patrick H. . Win ston 12 . Representation

Macbeth kill Duncan [see kill-ma]. Lady-Macbeth cause kill-ma (see
cause-ma]. Cause-ma method persuade-ma. Lady-Macbeth persuade
Macbeth [see persuade-ma]. Persuade-ma act kill-ma.

DETERMINING CORRESPONDENCE
USING CAUSE-DOMINATED MATCHING

It is easy to be seduced into worrying about matching for its own sake,
without attention to the sorts of things to •be matched . This typically
leads to the invention of all sorts of mechanisms of doubtful value in
practice . Consequently, the matcher described here was developed by
implementing only those mechanisms for which desperate need already had
been established.

For the moment, assume all types, features, and relations are
equally important. Later, it will be shown how cause relations can be used
to distinguish important relations from incidental ones.

Examples will deal with both stories and scientific laws . For
some, the system must do a kind of abstraction before matching is possible.
For others, the, system must ask questions.

The Simplest Matcher Tries all Possibilities

Suppose there are two stories or situations or constraints, each of which
has a group of frames in the PART slot. In general, if there are Ni frames
in one group and !‘J2 in the other , then the number of ways the frames can be
paired up is N1 !I(N1-N2) ! , given that Ni is equal to or greater than N2.
Often Ni equals N2, and the number of distinct pairings is just Ni’.

The implemented matcher tries each of the possible pairings,
calculates how good each is, and announces the best. It is therefore
similar to the matcher used by Evans in his work on geometric analogy (3].

At first thought, trying all possible pairings seems hopeless since
the number of possible pairings gets big fast. For small Ni and N2, the
number is manageable :

)



Patrick H. Winston 13 Correspondence

NI N2

1 2 3 4 5

1 1 ’ 1
2 2 2
3 3 6 6
4 4 12 24 24
5 5 20 60 120 120
6 6 30 120 TB TB
7 7 42 TB TB TB
8 8 56 TB TB TB
9 9 72 TB TB TB
10 10 90 TB TB TB

TB ==> Too Big, i.e. > 150

The matcher , when compiled , handles 100 or so pairing possibilities without
excessive strain . For larger numbers , something else must be done to
constrain the number of pairings considered. We will return to this later.( For now, think about the following question:

I The matcher will be unable to handle groups with more than some
small number of frames in them. Thus there is a natural constraint
on the analogies that the system can understand in that the number
of parts involved must be small. Is this true of people too?

Each way of pairing off the frames in two frame groups produces a
set of paired frames that we will refer to as a list of linked pairs. Each
list of linked pairs is evaluated in two steps: first a similarity score
is calculated for each linked pair in the list; then the similarity scores
are added .

The similarity between two frames that constitute a linked pair is
calculated by inspecting the slots:

• If two linked frames contain the same value in so e  particular
slot, score one point.

I If two linked frames contain the two parts of another linked pair
in some particular slot, score one point.

Suppose, for example , that Prince Charming and Cinderella are the
characters in one story and Romeo and Juliet are the characters in another.
(These names were picked so th~t the combinations are mnemonic -- the plots( are not developed in this illustration.)



Patrick H. Winston 14 Correspondence

(CHARM I NG (JOB (ENTERTAINING))
(IIQ ( BRAVE ) ( STRONG))
(LOVES (CINDERELLA)))

(CINDERELLA (JOB (CLEANING))
(HQ (BEAUTIFUL)))

(ROMEO (JOB (FIGHTING) (CLEAN I NG))
(HQ (STRONG))
(LOVES (JULIET)))

(JULIET (HQ (BEAUTIFUL)))

The w i n n i n g  match pairs CHARM I NG with ROMEO and CINDERELLA with JULIET,
giving a match score of three . The similarity of CHARMING and ROMEO is two
under this arrangement -- one point is for having the same value in the HQ
slot and the other is for having the two halves of a linked pair in the
LOVES slot . The similarity of CINDERELLA and JULIET is one. The other
possible match , CHARMING with JULIET and CINDERELLA with ROMEO gives a
score of one because the only similarity is that found between CINDERELLA
and ROMEO because both have CLEANING in the JOB slot.

Corresponding Comments are Treated like Linked Pairs

For the sake of illustration, suppose Prince Charming persuades Cinderella
to kiss him and Romeo persuades Juliet to do the same to him. These facts
would be indicated by the following frames , in which only the relevant
slots are shown :

(CHAR MI NG (PERSUADE (CINDERELLA (SEE (PERSUADE-Cl)))))

(CINDERELLA (KISS (CHARMING (SEE (KISS-Cl)))))

(PERSUADE-Cl (ACT (KISS-Cl)))

(KISS-Cl (TIME (END)))

(ROMEO (PERSUADE (JULIET (SEE (PERSUAD E-RJ)))))

(JULIET (KISS (ROMEO (SEE (KISS-RJ)))))

(PERSUADE-RJ (ACT (KISS-RJ)))

(KISS-lW (T IME (END))) )
Pairing CHARMING and ROMEO gives one new point from the PERSUADE slot as



Patrick H. Winston 15 Correspondence

does pairing CINDERELLA and JULIET from the KISS slot. However it is
evident that pairing the characters in this way puts PERSUADE-Cl and KISS-
CI in correspondence with PERSUADE-RJ and KISS-RJ. There should be two
additional points since the PERSUADE-Cl and PERSUADE-RJ frames have
corresponding frames in the ACT slot and since KISS-Cl and KISS-RJ have
corresponding frames in the TIME slot. The total score should be seven.
Figure 3 illustrates the combinations that lead to this score in graphic
form.

This scoring is insured because the matcher adds corresponding
comment frames to each possible list of linked pairs after it is formed but
before it is scored . Thus the corresponding comment frames are considered
linked when scoring other frames, and they themselves are scored.

The A KO Slot Needs Special Handling

So far it would not help to add the following information:

Charming is a prince. Romeo is a boy.

Cinderella is a princess. Juliet is a girl.

Curiously, having PRiNCE in CHARMiNG ’s ARO slot and BOY in ROMEO’s lends no
strength to their similarity, nor does it help to have PRINCESS in
C INDERELL A ’s ARO slot and GIRL in JULIET’s. Something must be done so that
the matcher recognizes the implied relationships that we see. It must know
that a prince and a boy are the same sex as are a princess and a girl.
Here is a solution that seems to work:

I All AKO slots are treated as if they contained everything that is
found by tracing through the AXO hierarchy from them.

The AKO slot of CHARMING contains only PRINCE, but it is treated as if it
comtained PRINCE , PlAN , and PERSON. Similarly ROMEO ’s AKO slot is treated
as if it contained not only BOY, but also MAN and PERSON. CINDERELLA is a
PRINCESS, a WOMAN, and a PERSON. JULIET is a GIRL , a WOMAN, and a PERSON.
Figure 4 shows the AKO hierarchy that gives these augmentations. They lead
to a match score of eleven, four more than before.

Some may feel it lacks aesthetic purity to treat one particular
slot specially . Consequently I note in passing that there is another way
to achieve the same effect without putting knowledge about AKO slots in the
matcher. The idea is to put the following demon in the if-added slot of
AKO so that AKO slot expansion is done as AKO values are recorded, rather
than at the time of match . The demon , regrettably, will be obscure to
those who do n~~ know LISP:



act

ROMEO ~~ JULIET

hq~~ ~~ hq 

I

time

strong beautiful end

~~~ 
hq

t ime)

.

CHARMIN G loves
~~ CINDEREL LA

kiss - ci
kiss

~~~~~~~~~~~~~~~~~~~~~~~~ persuade-c~~~~~ 
act

Figure 3: Matching Cinderella with Romeo and Juliet produces a match score
of seven. Having the same qualities accounts for two points; having the
same relations between the people accounts for three more; and having the
comment frames on the link list accounts for the final two.



(
PERSON

VN
MAN WOMAN

/\ /\
PRIN CE BOY PRIN CESS G IRL

CHARMIN G C INDERELLA ROMEO JUL IET

• 4 4 4 ’ +
L  

I

Figure 4: ‘he AKO hierarchy is exploited in matching if the parts have
types . 1~~ AKO slots contribute four points to the scoring of the match
with ROMEO paired with CHARMING and CINDERELLA with JULIET even though each
has something different in its AXO slot.



Patrick H. Winston 18 Correspondence

AKO has inverse instance - if-added
(mapc ‘( lambda (e) (fpfsv frame ‘ako e ))

(fgfsvs value ‘ako))
(mapc ‘( lam bda (e) (fpfsv e ‘ako value))

(fgfsvs frame ‘instance)).

This approach has the added virtue of putting MO expansion under data-base
control. It is easy to revise the demon so that only the next level of AKO
values are brought in.

Perhaps more importantly, the demon approach would facilitate
factoring the AKO relation into more precise forms. Sometimes an object is
a kind of something because of physical structure, sometimes because of
procedural characteristics, and sometimes because of location. There is
nothing to prevent different names for these and other kinds of AKO
relations. With different names , selective expansion can be just a matter
of turning the right demons on and off. In this paper, however, only the
general AKO relation is used, and the advantage is therefore a speculation.

Causality Makes some Relations more Important than others

There is some debate about whether a matcher should distinguish among the
slots and values involved in a particular match . Some argue that the AKO
slots are the most important. Others argue for HQ. Still others dislike
both AKO and HQ but like everything else.

Another , milder view is that all slots are important, but to a
varying degree that has to be accounted for by a weighting scheme, possibly
context dependent. This can quickly give the matcher an ad hoc feel. It
is disturbing when a program must be tuned up by fooling with a system of
parameters.

Nevertheless , some relations are more important than others because
they lead to the conclusions that are to be discovered through the analogy
process. Sometimes the important relations are AKOs, sometimes HQs, and
sometimes things that are normally incidental.

Thankfully, importance tends to be taught by teachers, either
explicitly or implicitly. Explicit teaching is done when teacher says,
perhaps without justification , that some fact is important. Implicit
teaching is done when a teacher includes some fact in a causal chain . Thus
I take the following position :

I Any relation can be important in matching. The importance of a
partictilar relation can be determined by remembering what teachers
have said about it and by noting whe ther it is involved in causing
something.

For the most part , the examples in this paper assume a beneficent
teacher who gives only the relevant facts and who does not deliberately try



Patrick H. Winston 19 Correspondence

to confuse the system by shoveling detritus at it. It is important,
• however, to understand that mechanisms have been implemented that pay

attention to importance on demand.
In particular, the matcher can be told to use only relations that

have comment frames with IMPORTANT in the HQ slot. The HQ slot of a
comment frame can have IMPORTANT placed in it directly as follows:

Macbeth kill Duncan (see kill-ma]. Kill-ma hq important.

Or, alternatively, the HQ slot can have IMPORTANT put in by a demon placed
in the CAUSE frame. Using this demon, all frames at either end of a cause

• relation are noted to be important, as well as the cause relation itself:

Cause has if-added
(fpfsv frame hq ‘important)
(fpfsv value ‘hq ‘important)
(fpfsv (fgfsvcr frame slot value ‘see) ‘hq ‘important).

Other candidates for such treatment are the cause-related slots PREVENT,
MOTIVE , REASON, and DESIRE .

Actually, the implemented strategy represents one end of a spectrum
of possibilities. As it stands, relations never become globally important.
A looser strategy would make a relation important everywhere in a situation
if it is determined to be important somewhere in the situation. And a
still looser strategy would make a relation important everywhere in a
situation if it is important somewhere in some other situation of the same
general class.

Matching Large Groups seems to Require some Preliminary Classification

As the size of two groups to be matched becomes large, trying all
possibilities becomes intractable. There are two choices: throw away the
exhaustive matcher and do something else, or somehow prune the collection
of matching alternatives that the matcher generates. The implemented
matcher prunes:

• One way to limit the matching alternatives is to restrict the
pairings to those that link together only frames of the same type,
as specified by instructions to the matcher.

For example , if there are two groups of people to be matched, and each
contains , say, three men and four women, then the total number of match
alternatives is:

N1 !I(N1-N2)! 7! 5040 

• - —‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - - - -



Patrick H. WInston 20 Corresp ondence

But if the matcher is instructed to link men only with men and women only
wi th women , then the number is:

Nl!/(Ml-N2)!  * Wl !/(W1-W2) 3’ * 4! = 6 * 24 = 144

The smaller number is only 3% of the larger. Of course it is no longer
possible to discover a male Cinderella , a defect that may suggest a similar
difficulty when people must deal with analogies involving many parts. To
prevent too many blunders of this sort requires some way of selecting a
good set of types for the matcher. There may be some way of doing this by
inspecting the AKO hierarchy in the vicinity of the frames involved in the
match .

The Matcher finds Corresponding parts in Stories

Here are some results showing the match scores between the four
Shakespearean tragedies and one comedy in Appendix 2:

MA HA 01 JU TA

MAcbeth 61 23 14 17 10

HAmlet 23 66 14 19 9

OThello 
‘ 

14 14 57 17 13

JUlius Caesar 17 19 17 51 7

TAming of The Shrew 10 9 13 7 46

The choice of Shakespearean tragedies was somewhat ill-advised since they
lean toward the macabre. Nevertheless, it is interesting that the tendency
to have evil, murder , and death everywhere in sight does make them more
similar to each other than to the . comedy.

The average score on the diagonal is 56. Evidently the average
number of facts known about each story is therefore 56. Some of the facts
are derived by demons and others are implied by the AKO connections.

It is instructive to look at the best and worst off-diagonal
matches to see if they make sense. Evidently Macbeth and Hamlet show some
similarity. The matcher announces its view as follows:



Patrick H. Winston 21 Correspondence

4j.

Matching MA and HA Trying 120. permutations.

Score = 23. versus 61. and 66. Match is decisive -- 1.
better than next best.

(23 .
(9. MACBETH CLAUDIUS )
(5. DUNCAN GHOST )
(4. LADY-MACBETH GERTRUDE)
(3. MACDUFF HAMLET)
(I. MURDER-MA MURDER-HA)
(1. WEIRD-SISTERS LAERTES)
(0. KILL-MA KILL-CLAUDIUS )
(0. AKO-MA-2 MO-HA))

( This makes some sense . Macbeth and Claudius both kill a king so as to
become king and both are killed in turn. Their victims are Duncan and the
ghost. Their wives are Lady Macbeth and Gertrude . Macduff and Hamlet kill
them. Other matches are weak and contribute only weakly to the similarity.

On the other hand , The Taming of the Shrew and Julius Caesar show
little similarity. In fact, there is nothing beyond the fact that there
are four people to pair up and two of the four have the same sex. The
score of seven is at the level of background noise.

Matching TA and JU

Score 7. versus 50. and 51. Match is indecisive.

(7.
(2. PETRIJCHIO BRUTUS)
(2. BIANCA APJTONY )
(2. LUCENTIO CAESAR )
(1.  KATHAR I PJA CASSIUS))

Incidentally, the general shape of the table, as well as the best and the
worst matches , are the sane if zero points are given for values in the AKO
slot or even for vaiu~~ in both MO and HQ. For the stronger atches, the
relationships between parts are enough .

• Perhaps more importantly, the general shape of the table is the



Patrick H. Winston 22 Correspondence

seine when the matcher counts only the relations that are demonstrably
important. The following revised table shows this:

MA HA 01 JU TA

MAcbeth 14 12 5 9 0

HAmle t 12 27 6 11 0

OThello 5 9 16 7 1

JUlius Caesar 9 11 7 24 1

TAming of The Shrew 0 0 1 1 11

The scores are much reduce d, but st ill Macbeth and Hamlet are similar
wh ile The Taming of the Shrew and Julius Caesar are not.

The table was produced by the following steps: first , importance-
marking demons on CAUSE , PREVENT , MOTIVE , REASON , and DESIRE were
activated ; second , existing demons on MURDER and KILL not only infer new
facts , they also note that the triggering facts cause the inferred facts;
and third, only relations marked as important are counted.

In this context, it probably would be sensible to add further
conditioning to the demon mechanism such that if-added demons wou ld fire
only if their antecedents are important. As it stands, the demons on
MURDER and KILL make instances of MURDER , K ILL , and certain HQs important
by automatically placing them in CAUSE chains.

Unfortunately, conditioning demons on importance is not practical
at the moment. The reason is that if-added demons, as now implemented , are
triggered when a relation is added . Consequently demons have no knowledge
of what will be said about a relation after it is in place . In particular,
demons cannot predict whether IMPORTANT will end up in the HQ slot of a
relation ’s coment frame at the time the relation is first established.

Other Similarity Measures are Possible

The similarity measure between situations i. scored as a byproduct of the
matching process. The similarity Is just the total number of corresponding
slot-value combinations exhibited when the frames in two groups are
optimally paired. Thus the similarity is a measure of overlap .

Many other authors have considered the question of similarity
measurement , although not between groups of frames. In particular,
Tversky considers situations in which two objects defined by feature sets
are to be compared (16]. He argues persuasively that similarity should be
determined not just by the features that correspond, but also by those that
do not. For determining the similarity of feature set A to feature set B,



Patrick H. W Inston 23 Correspondence

he recomeends this formula :

SIMILAR I TY (A ,B) 0 f (A  t% B) - a f (A - B) - 13 f(B - A)
For some 0, a, and 13

Where f is typically a function that satisfies additivity:

f (X U Y) f (X) + f (Y)

In this paper simiJiirity is measured between groups of frames rather that
feature sets. A (~ B is analogous to the corresponding slot-value
combinations; A - B and B - A would be analogous to the slot value
combinations in one group of frames but not in the other; f is just a
function wh ich counts; 0 is 1; and both a and 13 are 0. If the analogs to
A - B and B - A were used with unequal a and j3, the measure would be
unsymoetric -- one situation may be more similar a second that the second
is to it.

Later we will return to the subject of matching stories.

The Matcher works on Physical Laws as well as on Stories

Consider the relationship between the water pressure and water flow in a
pipe . It is possible to talk about the kind of thing each is, as well as
about how each is related to the other and to the resis%ance of the pipe.
The facts can be represented using the same symbol-arrangement conventions
together with a new vocabulary:

PIPE-LAW is ako constraint - has part pressure-pi flow-pi
and resistance-pi - dependent-variable pressure—pi —
independent-variable flow-pi - multiplier resistance-pi.

Pressure-pi is ako water-pressure . Water-pressure is ako
pressure . Pressure is ako force. Flow-pi is ako water-
flow. Water-flow is ako flow. Resistance-pi is ako water-
resistance . Water-resistance is ako resistance.

Pressure-pi is proportional-to flow-pi (see proportional-
to—pt ] .  Proportional-to-pt has mult ip lier resistance—pi.

Matching a specific situation against this constraint is like matching one
story against another . Mot3 3 gives details , showing that matching is
successful if a situation just has AKO relations , or just has relations
between parts , or both . The note also shows that a specific situation and
a general law nedd not be so closely related, as when en electrical



Patrick H. Winston 24 Correspondence

situation involving a resistor is matched against the water law involving a
pipe .

Difficult Situations are Improved by Abstraction

There may be clear clues about how two situations correspond , but no direct
evidence. Suppose, for example, that A is proportional to B in one
situation while X is determined by Y in the other. Or suppose that A is
known to be a kind of force in one situation and X is known to cause
something in the other. Matching should be possible because being
proportional to something is a way of being determined by something and
forces are things that cause.

Note 4 gives the details of how this can be done by using demons to
make simple one-step deductions when matching seems too difficult. No
changes are made to the matcher itself. The result is the following
conclusion:

U Demons make simple abstraction possible. Two situations can match
well after abstraction even if they do not match well as they
stand.

Match can be Improved by Asking Questions

If abstraction is not sufficient to produce a good match, asking some
simple questions may help. Note 5 shows how to generate such questions by
using the AKO connections of the parts involved in a situation or by using
the relations between parts.

IDENTIFYING ANALOGIES AND
CLASSIFICATION-EXPLOITING HYPOTHESIZING

Several identification and hypothesizing mechanisms have been implemented,
including the following: matching one situation against a list of
possibilities ; matching a situation group against a situation group;
using a situation to guide a search through a network of possibilities
related by SIMILAR-TO; and using a situation to probe into an annotated
MO tree .

Of these, the most important is the mechanism that uses an
annotated MO tree, for it is suggestive of how information retrieval might
be done . Hasty readers are advised to skip to the subsection describing
it. )



Patrick H. Winston 25 Ident Ification

Matching one Situation against a List of Possibilities

First , a situation can be matched against a list of given situations and
the results are ordered by the matching score. Dull. This identification
method is not much use unless there is a limiting context or some method
for producing a small number of good hypotheses.

Given a small context or set of hypotheses, the best match can be
identified , however. Let us look at a scenario in which Shakespeare’s
Macbeth, Hamlet, Othello, Julius Caesar, and The Taming of the Shrew are to
be considered. We will see identification become sharper, as illustrated
by figure 5, as more is specified. The scenario begins with a statement
that two persons are involved:

XA is ako story - part Macbeth-xe Duncan-xa.

Macbeth-xa is ako person. Duncan-xe is ako person.

The identification algorithm yields indifference since all the
possibilities have two persons:

The matches, in order of quality, are :
2. 100. % NA
2. 100. % HA
2. 100. % 01
2. 100. % JU
2. 100. % TA

Now we add that one person murders another:

Nacbeth-xa murder Duncan-xa .

This improves the best score by four because the murder assertion is
augmented by demons that add that NACBETH-XA is evil, that DUNCAN-XA is
dead , and that PIACBETH-XA kills OUNCAN-XA. Now some differentiation is
evident:

The matches , in order of quality, are :
6. 100. % NA
6. 100 . % HA
6. 100. % JU
4. 66. % 01 -

2. 33. % TA

Next a third person , married to one of the existing ones , is added:

XA has part Lady-Macbeth-xa. Lady-Macbeth-xe is ako
person . Macbeth-xe married-to Lady-Macbeth-xa.



Lady-Macbeth-xa hq greedy .
10

XA has part Lady-Macbeth-xe.

B ~~~~~~~~~~~~~~~~~~~ ~:~~: 
th-xa is ako person .

Lady Macbeth xa 

Macbeth-xa murder
Duncan-xe .

___ 
I

_ _ _ _  I )2
I ’
I ~I I

‘
I

______ 
I

MA HA 01 SU TA

Figure 5: Identification sharpens as more is known . The curve rises as
more facts are given . 

—



Patrick H. Winston 27 IdentificatIon

The matches , in order of quality, are :
9. 100. % MA
9. 100. % HA
7. 77.% JU
6. 66. S 01
5. 55. % TA

Finally, it is stated that the new person is greedy:

Lady-Nacbeth-xa hq greedy.

The matches , in order of quality, are :
1.0 . . 100 . % MA
9. 90. % HA
7. 70. % JU
6. 60. % 01
5. 50. % TA . -

At this point the scenario continues by making a sort of knee—jerk,
reflexive prediction that NACBETh-XA will end up unhappy and dead. The( details of just how this happens will be expl*inéd later.

Considering NA HA 01 JU TA
The most like XA seems to be MA
I will try a -prediction based on it.

Evidently MACBETH-XA has UNHAPPY in HQ
Evidently PIACBETh-XA has DEAD in HQ

(MACBETH-XA (PART-OF (XA))
(AKO (PERSON))
(MURDER (DUNCAN-XA))
(KILL (DIJNCAN-XA (BECAUSE ((MURDER ASSERTED)))))
(HQ (EVIL (BECAUSE ((PERSON MURDERS))))

(UNHAPPY (INSERTED-BY-RULE (RULE-MA)))
(DEAD (INSERTED-BY-RULE (RULE-MA))))

(MARRIED-TO (LADY-MACBETh-XA)))



Patrick H. Winston - 28 IdentifIcation

Matching a Situation Group against a Situ ation Group

Second, the parts of one group of situations can be identified one after
the other with the parts of another group of situations.

This was implemented primarily to handle the problem of identifying
the analogy between- the basic constraints of the electrical world and those
in the mechanical world. The resistor, capacitor, and inductance laws
constitute the first group, and the damper , spring, and momentum laws, the
second. It would not be practical to throw all of the parts of the laws in
each group into two bags and to then match those bags. The number of
possibilities doing things that way would be, in fact, a staggering 11! g

33,916,800 .
The basic step in this alternative, incremental approach is to

match the first unmatched thing in the first group with all the things in
the second. The most similar thing is then removed from the second group
and the process is repeated until one of the groups is exhausted .

Importantly, the corresponding items found in the best matches so
far form part of the l ink li st for new matches. In general, this biases
the new matches toward compatibility with the old ones. In this particular
example, it biases the matching toward a solution in which all voltages and
all currents are identified with nothing but forces or nothing but
velocities. It is also necessary to have RELATED-TO relations between all
instances of voltages, curr ents, forces, and velocities. These relations
are placed by an if-added demon on MO.

In the results that follow, the first match is indecisive. In
fact, there are two equally good analogies between these electrical and
mechanical laws as described to the system. By chance, the standard one
was selected by the system at the point of indecision. The standard one
would be forced by simply noting that voltage and mechanical force are both
a kind of more abstract force. Much of the output is suppressed as it is
extraneous. See Appendix 3 for the actual input.

Matching RESISTOR-SITUATION and DAMPER-SITUATION
Matching RESISTOR-SITUATION and SPRING-SITUATION
Matching RESISTOR-SITUATION and MOVING-MASS-SITUATION

I match RESISTOR-SITUATION against . DAMPER-SITUATION

I have an in i t i al l ink list:
RESISTANCE B
CONDUCTANCE 1-OVER-B
PROPORTIONAL-TO- R-2 PROPORTIONAL-TO-D-2
PROPORTIONAL-TO- R- I PROPORTIOP4AL-T0-D-1
RESISTOR-VOLTAGE FORCE-ON-DAMPER
RESISTOR-CURRENT DAMPER-VELOCITY



Patrick H. Winston 29 IdentIfication

Matching CAPACITOR-SITUATION and SPRING-SITUATION
Matching CAPACITOR-SITUATION and MOVING-MASS-SITUATION

I match CAPACITOR-SITUATION against SPRING-SITUATION

I have an- initial link list:
RESISTANCE B
CONDUCTANCE 1-OVER-B
CAPACITANCE 1-OVER-K
CAPACITOR-CURRENT SPRING-VELOCITY

- RESISTOR-VOLTAGE FORCE-ON-DAMPER
RESISTOR-CURRENT DAMPER-VELOCITY
PROPORTIONAL-TO-C PROPORTIONAL-TO-S3
CAPACITOR-VOLTAGE FORCE~~N-SPRING
PROPORTIONAL-TO-R- 2 PROPORTIONAL-TO-D-2
PROPORTIONAL-TO-R- 1 PROPORTIONAL-TO-D- 1

Matching INDUCTOR-SITUATION and MOVING-MASS-SITUATION

I match INDIJCTOR-SITUATIbN against MOVING-MASS-SITUATION

( ( 9 .  RESISTANCE B)
(9. CONDUCTANCE 1-OVER-B)
(8. CAPACITANCE 1-OVER-K)
(3. INDUcToR-VoLTAGE FORCE-ON-MASS)
(3. CAPACITOR-CURR ENT SPRING-VELOCITY )
(3. RESISTOR-VOLTAGE FORCE-ON-DAMPER)
(3. RESISTOR-CURRENT DAMPER-VELOCITY)
(2. INDUCTOR-CURRENT MASS-VELOCITY )
(2. CAPACITOR -VOLTAGE FORCE-ON-SPRING )
(1. PROPORTIONAL-TO-C PROPORTIONAL-TO-S3)
( 1. PROPORTIONAL-TO-R-2 PROPORTIONAL-TO-D-2)
(1. PROPORTIONAL- TO-R- 1 PROPORTIONAL-TO-D- 1)
(0. PROPORTIONAL-TO-L PROPORTIONAL-TO-M)
(0. INDUCTANCE MASS))

Using a Situation to Guide a Search through a Network of Possibilities
Related by SIMILAR-TO

Third, a situation can be used to drive a best-first search through a user-
prepared network of SIMILAR-TO relations. Search terminates when some
user-supplied number of alternatives has been examined.

This is a straightforward implementation of ideas from Winston (19)
and Minsky [8]. Regrett&’ly, not much was learned from the implementation.
To be sure, a similariLy net was constructed from the stories in
Appendix 2, but there are not enough of them and they are not similar
enough to demonstrate anything. With a data base of the size used , only



Patrick H. Winston 30 Identification

illustrations are possible . Yet as it stands there is enough data to make
a PDP-1O uncomfortable . The LISP machine will help, of course.

Figure 6 shows the similarity net and the results of some searches
in it.

Using a Situation to Probe into am Annotated AKO Tree

Forth, a list is made of everything a situation ’s parts are a kind of.
Each element of this list is checked to see if it has a CONSTRAINED-BY
slot. Values in such slots are used to hypothesize likely matching
situations. This method hat an information-retrieval flavor.

Information is placed in CONSTRAINED-BY slots whenever am AKO
relation is placed in a frame that already has a PART-OF slot. In fact,
everything in the PART-OF slot is placed in the CONSTRAINED-BY slot of the
frames in the MO slot and all of the ones above in the MO tree. Suppose,
for example, that we start with a tabula rasa and supply the following:

Prince is ako man . Man is ako person . Princess is ako
woman . Woman is ako person. Boy is ako man . Girl is ako
woman .

CI is ako story - part Charming Cinderella. Charming is
ako prince. Cinderella is ako princess. <Plus other facts
about Charming and Cinderella>

SN is ako story - part Snow-White. Snow-White is ako
princess. (Plus other facts about Snow White>

The effect is to place CI in the CONSTR.AIP4ED-BY slot of PRINCE , NAN ,
PERSON, PRINCESS, and WOMAN , and to place SN in the CONSTRAINED-BY slot of
PRINCESS, WOMAN , and PERSON.

The CONSTRAINED-BY slots are used when looking for stories to match
a given situation . The MO tree standing above each part of the given
situation is searched for CONSTRAINED-BY slots. These slots then vote for
the stories they contain . Suppose, for example , that the following
situation is given :

RJ is ako situation - part Romeo and Juliet. Romeo is ako
boy . Juliet is ako girl . <Plus other facts about Romeo
and Juliet>

Since Romeo is a boy and Juliet is a girl, BOY, GIRL, MAN , WOMAN, and
PERSON are checked for CONSTRAINED-BY values. Three vote for CI and two
for SN.

In the actual implementation , the voting is weighted in two ways :



Find HA, starting at OT.

Find TA , starting at HA.

HA Ir- PIA ~~~JU ~~~OT — — —  DH

HG— — ~.PY — — — CI  I- TA

Find JIG , starting at TA .

HA— — — IA— — —-JU — — — .-OT — — — DH

/\
_ _HG— — — PY — — —CI -’~ TA

Figure 6: A similarity net and soMe searches through it. Connections were
placed between situat io ns that sho4~ed a matc h score of 30% or more of score
of either matched against itself. The structure of the net depended
delicately on the choice of this threshold. The key is as follows: HA
-Ham let, MA = Macbeth , IJU = Julius Caesar, 01 Othello , DH A Doll’s House ,
HG’ = Hedda Gab/er, PY = Pygmalion, CI = Cinderella, and TA Taming of the
Shrew. Note that situations attached directly to situations on path were
considered too .



Patrick H. WInston 32 IdentifIcation

• Each encountered Instance of CONSTRAINED-BY casts votes in inverse
proportion to the number of values present. This reduces the
weight of f r equen tly occurring types.

I Each encountered instance of CONSTRAINED-BY casts votes in
proportion to the number of slots in the part of the situation
associated with it. This increases the weight of the more
i~nportant parts of the situation .

As told, the story RJ has two parts , Romeo and Juliet . Romeo has six slots
and Juliet has four. Romeo is connected to MAN, which has only CI in its
CONSTRAINED-BY slot , and to PERSON, which has both CI and SN. Thus Romeo ’s
contribution is nine votes for CI and three for SN. Juliet’s is connected
to WOMAN and PERSON, each of which has both CI and SN in the CONSTRAINED-BY
slot. Thus Juliet ’s contribution is four votes for each . CI beats SN, 13
to 7.

Using r~~.~tions for indexing and retrieving, incidentally, requires
no further machinery, since relation-describing frames can be story parts
just as other frames are. The following would do this for the frame KISS-
CI, which appears as a coimnent in the KISS slot of the CIND ER ELLA frame:

Kiss is ako slot . Kiss-ci is ako kiss. Kiss-ci is part—of
ci.

CI wou ld end up in the CONSTRAINED-BY slots of the frames KISS and SLOT.
To make use of th i s  new information in identifying some- situation, a kiss
relation would have to appear in the PART slot of that situation , of
course.

It is also reasonable to index and retrieve on pairs of situation
parts. As it stands , the implementation allows a search for plausible
stories that have parts that are a kind of PRINCE and a kind of MARRY.
Using pairs for indexing and ret rieval would enable a system to look for ,
say, stories in which a frame that is a kind of PRINCE has a MARRY slot. I
have not thought much about how to do this or even if it sl ould be done.

Whether relations or objects should dominate indexing and retrieval
seems to depend on circumstance . Of I hand , since there are fewer relation
types than object types , it seems likely that the slot hierarchy would
become gorged sooner, therefore suggesting that objects are better unless
there is some good limiting context.

Appendix 4 gives the results obtained by using the method on each
of the stories in Append Ix 2. Only the two Ibsen plays gave results in
which the story used as a probe was other than the unambiguous first
choice. This is not strange . The Ibsen people are just people , men and
women , not princes , generals or other disting~ishing things.

Similarly, the XA version of Macbeth , used before, gives
indifferent results , since it too has no useful information in the MO
slots of the people .



Patrick H. Winston 33 IdentificatIon

It Is not Clear if the ClassIficat ion-exploiting Method Scales Well

In the end , the- gorging question must be looked at to determine if the MO-
based identification method is robust enough to be useful when the number
of stories increases to a practical size .

The work of Rosch et al is probably relevant (14]. They argue that
the world of human experience is such that there is a so-called basic level
of class abstraction in the MO hierarchy. At this basic level, two things
are true: at the next level up, the members of the classes share
substantially fewer properties than at the basic level; and at the next
level down in the hierarchy, •the members of the classes share about the
same number of properties as at the basic level. Concepts like guitar,
apple, hanuner , shirt, table , and car are at the basic level. Musical
instrument , fruit , tool , clothing, furniture, and vehicle are higher.
Grand piano , Mackintosh apple , ball-peen haimner, dress shirt, kitchen
table, and sports car are lower.

Importantly, people tend to recognize and specify concepts at the
basic level first , according to their results. This might mean that the
most useful situation-hypothesizing information would be at that level
since people specify things only at that level and since the higher level
evidence would be far more ambiguous.

If there are only, say, a thousand basic types, and if each
situation uses , say, four objects and relations in a prominent way, then
there could be on the order of 10’~ tuations with different combinations.
There would be plenty of room for an expert to know a lot. But of course
the space of combinations certainly is unevenly filled by the situations
that are useful. A better analysis or some experimentation is needed,
therefore, to see if the MO-based identification method will work in
practical situations.

Now let us look at the subject of abstraction as it impacts on the
matching that follows hypothesis generation .

Demons can do Abstraction

The matching part of identification often requires some abstraction of the
relations involved. The fact that demons can do abstraction was made in
the discussion of matching. The point deserves emphasis.

Suppose two abstract situations are proposed , one involving a
tragic event , and the other , a person in conflict with himself:

TE Is  ako situation - part evil-person good-person .

Evil-person is ako person . Good-person is ako person.
Evil-person hurt Good-person . Evil-person hg evil. Good-
person hq good .



Patrick H. Winston 34 Identification

IS is ako situation - part Grubbla.

Grubbla is ako person . Grubbla has-conflict-with Grubbla.

As they stand , neither has anything at all in con~non with the stories in
Appendix 2 , ot her than that people are involved and that some explicit
hurting goes on in Ibsen ’s A Doll’s House and Shaw ’s Pygmalion. Good and
evil are nowhere to be found.

Abstraction demons make good matches happen anyway . Existing
demons on HQ and MURDER arrange for people to have GOOD and EVIL qualities .
The following ones add machinery for generating values in HURT and HAS—
CONFLICT-WITH slots.

Kill has if-added (fpfsv frame ‘hurt value).
Hurt has il-added (fpfsv frame ‘has-conflict-with value).

Given these , we can look for matches in the stories of Appendix 2, with the
following results , first for the tragic event situation :

The matches , in order of quality, are :
5. 83. % MA
5. 83. % HA
5. 83. % OT
5. 83. % JU
4. 66. % DH
4. 66. % PY
4. 66. % AD
3. 50. % - Cl
2. 33. % TA
2. 33. % HG

The act of murder made Macbeth an evil person and established that he hurt
Duncan . The story lacks perfect match with the description of tragic event
because it was not stated that Duncan was a good person , nor was it
deduced. Hamlet and Julius Caesar similarly fail to match perfectly. The
Ghost and Caesar are not known to be good .

Othe llo fails because Othello kills Desdamoita , but to kill does not
imply a person is evil as murder does. Desdamona , however , is good because
she is loyal.

Now consider the other situation , the one that involves self—
conflict:



Patrick H. Winston 35 IdentIfication

The matches , in order of quality, are :
2. 100. % HA 

-

2. 100 . % 01
2. 100. % ~JLJ
2. 100. % HG
1. 50. % MA
1. 50. % TA
1. 50. % DH
1. 50. % PY
1. 50. % CI
1. 50. % AD

To kill means to hurt which means to have conflict with . Evidently the
good matches are the ones with suicides. A form of irony, incidentally,
could be found the same way. But there were no incidents, at least as
described: -

IR is ako situation - part unfortunate-person desired-act
actual-act.

Unfortunate-person is ako person . Unfortunate-person want
desired-act - attempt desired-act (see atteapt-ir].
Attempt cause actual-act. Desired-act opposite actual-act.

Expansion goes toward Abstraction and toward Detail

Some demons expanded situations by adding details. Just now others
expanded situations by doing abstraction. Thus I take the following stand
on canonical representation :

• There should be no obsession with canonical form. If two
situations do not match well, but should, then the right approach
is to expand them until they show signs of similarity. This say be
in the direction of very basic primitives or very abstract
generalities.



Patrick H. Winston 36 Deduction

REACHING CONCLUSIONS USING
A FRAME-ORIENTED RULE SYSTEM

Having identified a situation with a story or constraint , the next thing is
to use it. One approach would simply look for conclusions in the story or
constraint and map them into the situation at hand.

Another approach leads to the development of frame-based situation—
action rules. There are two arguments for th is app roach : one is that such
rules constitute a more explicit representation o1~ what is to happen in
situations involving algebraic knowledge ; and the other is that if-added
demons can be viewed as simple special cases of such rules. It is not
clear that this second approach Is better. I t was followed.

Inasmuch as there Is considerable detail involved in explaining
just how this works , some readers may wish to jump to the next section to
see how verification of conclusions is done , particularly in legal cases .

Story and Constraint Frames Provide Access to Situation-action Rules

To reach a conclusion , two things are necessary: first it must be possible
to Identify the things that are constrained and the role that each thing
has with respect to the situation and second , it must be possib le to do
deduc t ions, given that the situation ’s parts and their roles are known .

To express rules , a rule represen tat ion must provide mechanisms for
finding things in the slots of the frame describing some particular
situation . Then it must further provide mechanisms for placing new things
in other slots. To meet these requir ements , situation-action rules can be
represented as frames corosisting of two slots , the SITU A TION slot and the
ACTION slot. The best way to explain how the rule interpreter uses the
information in these slots is to work through an example.

Suppose that there is some particular combination of water
pressure , water flow , and pipe resistance . Further suppose that these are
assembled together to form Xl , a frame that resembles the P IPE-LAW frame:

P I P E- L A W  is ako constra int  - has part pressure-pi flow-pi
and resistance-pi - dependent-variable pressure-pi -
independent-variable flow-pi - multiplier resistance-pi.

Xl is ako situation - has part pressure-X 1 f low-X 1 and
r es i s tanc e -X I - dependent-variable pressure-Xl -
independent-variable f low-X 1 - multiplier resistance-X 1.

Now there is to be a rule specifying that pressure is determined by
multiplying resistance times flow if values (or t~:en are known . Let us
call the rule for t ’ - RIJIE-PI. We augment PIPE-LAW by placing RULE—PI in
its RULE s lot :

Pipe-law ha. rule rule-pi.



Patrick H. Winston 37 Deduction

RULE-PI looks like this:

(RULE—PI (IF (IF1) (1F2) ( 1F3)) -
( THEN (THENI)))

The occupants of the IF and THEN slots are ordered lists of frames that are
matched against the particular situation at hand, Xl. Consider the frame
IFl , for example:

(IF! (MATCHES (SITUATION))
(DEPENDENT-VARIABLE o X))
(INDEPENDENT-VARIABLE (>Y))
(MULTIPL iER (>C)))

The > notation means find the thing that occupies the corresponding slot of
the situation frame and shove it into the variable. Thus matching the
first IF frame against Xl yields PRESSURE-Xi as the value of X; FLOW -Xl as
the value of Y;  and RESISTANCE-X1 as the value of C.

After matching the fir st IF frame , IF1 , against the situation and
picking up variable values , the rule interpreter proceeds to 1F2:

( 1F2 (MATCHES ( (C))
(QUANTITY (>CQ)))

The < notation means pull the value out of the variable. Thus this IF
frame is to be compared with RESJSTA)JCE-X1. If RESISTANCE-X1 has something
in the QUANTITY slot, it becomes the value of CQ. Similarly if FLOW-X I has
something In its QUANTITY slot, it becomes the value of YQ by way of IF
f rame 1F3: -

(1F3 (MATCHES (<Y)) - -

( QUANTITY ~~YQ ) ) )

Thus the first purpose of the IF frames is to certify that the situation
and its related frames have a certain rigid form . The second is to dig
certain values out. The values are used by the frames in the ThEN slot of
the rule .

In the example , the first and only THEN frame is THEN!:

( THEW 1 (MODIFIES ( <X) )
(QUANTITY (: (TIMES (CQ <YQ))))

This means that the fran” to be modified is PRESSURE-X1 , the frame that was
( dug out of Xl by the first frame in the IF part of the rule. It is to be

- - modified by placement of a new value in the QIIANTITY slot. The : notation

means compute the expression that fol lows .



Patr ick H. Winston 38 Deduction

All this taken together means that the rule interpreter can use
situation-action rule RULE-PI together with the situation described by X l ,
PRESSURE-Xl , RESISTANC E-X1 , and FLOW-X1 to place new information in
PRESSURE-Xl’ s QUANTITY slot. Thus RULE-PI and PIPE-LAW together describe a
constraint. Figure 7 shows how applying a rule is a bit like working with
a template .

It is convenient to have a simple way to translate simply written
situation-action rules into frames of the sort shown in the example.
Note 2 shows a transition network describing a translator that does the
Job . The translator accepts RULE-PI in the following form:

RULE rule-pi IF situation has dependent-variable >x -

mul tiplier >c - independent-variable >y. <c quantity >cq .
<y quantity >yq . THEN <x quantity (times <cci <yq). END

To sunanarize , constra ints are re presented as constra int frames tha t prov ide
access to situation-action rules and that specify what a situation frame
must look like to trigger the rules. For the moment , one quest ion is left
dangling: how is a frame describing the situation made to look like the
constraint frame-?

Copying is Initiated once Matching Provides Links

For RULE-PI to be applied to a particular situation , say Xl , the frame for
Xl must be made to look like PIPE-LAW so tha t there can be hope that the
situation part of RULE-PI will match it. Suppose , for example, that Xl is
a situa tion onl y known to involve three th ings constra ined by the pipe law:

(X l (AKO (SITUATION))
(PART (PRESSURE-XI) (RESISTANCE-Xl) (FLOW-X1)))

Before RULE-P1 has a chance , situation Xl must be transformed into this:

tX ! (AI(O (SITUATION))
(PART (PRESSURE-X1) (RESISTANCE-X1) (FLOW-X1))
(DEPENDENT-VARIABLE (PRESSURE-Xl))
(INDEPENDENT-VARIABLE (FLOW-Xl))
(MULTIPLIER (RESISTANCE-X1)))

This is done by a two-step procedure : first , the parts in Xl are matched
against the parts in PIPE-LAW ; and second , most of the structure of PIPE—
LAW is copied into Xl with substitutions determined by the matching step of
the procedure . Let us look at both steps in more detail.

First , PRESSURE-XI , FLOW-XI , and RESISTANCE-X1 of Xl are matched
against PRESSURE-PT , FLOW-PI , and RESISTANCE-PI of PIPE-LAW . The match is
straightforward given 3uitable information about what the parts of Xl are



1F2

I I
multiplier quantity

xi. ~~~
-u resistance-X l ~~ 3

-I

1F3m — —
~~var iable 

- 
- — 

quan ti ty 
~~ 5

( pressure-X1 
quantity 

~~ 15

IF !

Figure 7: SItuation-action rules are invoked when a sequence of template—
like tests fits over a situation description . Here IF1 is the first test,
and it fits Xl. In add it ion , it identif ies where 1F2 and 1F3 are to be
applied. Success c~ lls for altering PRESSIJRE-Xl by establishing its value.

H .

~~~~~


Patrick H. Winston 40 Deduction

or how they are related or both . Recall, for example, the water pipe
situations SI , 52 , and S3 discussed in connection with the matching
implementation . If Xl were any of them, the matching is easily
accomplished .

After matching, copying f leshes out Xl using PIPE-LAW together with
the list of paired frames from the match . Slots in PIPE-LAW are copied
into Xl if they contain something paired by the match . Note that copied
information is commented for clarity -- the comments are not used by any
programs at the moment.

(Xl (AKO (SITUATION) (CONSTRAINT (SUGGESTED-BY (PIPE-LAW))))
(PART (PRESSURE-X1) (FLOW-Xl) (RESISTANCE-X!))
(DEPENDENT-VARIABLE (PRESSURE-Xl (SUGGESTED-BY (PIPE-LAW))))
(INDEPENDENT-VARIABLE (FLOW-Xl (SUGGESTED-BY (PIPE-LAW))))
(MULTIPLIER (RESISTANCE-X ! (SUGGESTED-BY (PIPE-LAW)))-))

Now X l is in a form that RULE-PI can handle .

Making Analogies is Similar to Recognizing Instances

Now consider what happens when a student has no idea how to perform some
desired computation other than the teacher-supplied fact that there is some
particular analogy that may be exploitable . - -

Suppose , for example , that a student does not know Ohm’s law. The
student does know , from the teacher , that there is a voltage, resistance.
and current together with a suggest ion to think in terms of the pipe law:

X2 is ako situation - has part voltage-x2 current-x2 and
resistance-xZ .

If this were a water-pipe situation, spec ific variables would be matched
against the general variables in PIPE-LAW as before . But now, since the
teacher has claimed an analogy between a specific electrical situation and
the general water law, the match must be between the electrical things,
VOLTAGE-X2, CURRENT-X2, and RESISTANCE-X2, and the water things, PRESSURE-
PT , FLOW-PI , and RESISTANCE-PT.

Still , the match is stra ightforward , given suitable information
about what the parts of X2 are or how they are related or both . In
particular , there is no problem if the parts of X2 correspond to those in
any one of the electrical situations , 54 , 35, and 36, discussed in
connection with the matching implementation .

The match binds VOLTAGE-X2 to PRESSURE-PT , CURRENT-X2 to FLOW-PI ,
and RESISTANCE-X2 to RESISTANCE-PI. This enables the structure found in
the PIPE-LAW frame to be copied into the X2 frame with match-determined
substitutions:

Patrick H. Winston 4 1 Deduction

(X2 (AKO (SITUATION) (CONSTRAINT (SUGGESTED-BY (PIPE-LAW))))
(PART (VOLTAGE-X2) (CURRENT-X2) (RESJSTANCE-X2))

- (DEPENDENT-VARIABLE (VOLTAGE-X2 (SUGGESTED-BY (PIPE-LAW))))
- (INDEPENDENT-VARIABLE , (CURRENT-X2 (SUGGESTED-BY (PIPE-LAW))))

(MULTIPLIER (RESISTANCE-X2 (SUGGESTED-BY (PIPE- LAW)))))

The purpose of all this has been to create the DEPENDENT-VARIABLE ,
MULTIPLIER, and INDEPENDENT-VARIABLE slots and to place the proper things
in them. Now the situation part of RULE-PI can apply as before with Xl.

Note that the matching operation is robust. Saying a lot more
about the particular , incidental properties of the electrical variables
typically would not matter at all, since typically there would be no
corresponding incidental properties for the abstractions of PIPE-LAW.

Both Specific and General Laws can be Discovered

As we solve problems using analogies, we gain experience that enables us to
formulate new laws. These new laws make it easier and quicker to reach
conclusions.

• . Recall that a constraining law consists of a descriptive frame
together with one or more situation-action rules that trigger if the
descriptive frame is successfully, matched to a particular situation
description .

Note 6 shows how to learn the descriptive-frame part of a -law. It
first demonstrates that the descriptive frame for Ohm ’s law can be
discovered after two electrical situations are enriched by way of the
water-pipe analogy. It then demonstrates that the descriptive frame for
the general force-and-flow law can be discovered by combining Ohm ’s law and
the water~ pipe law. Both demonstrations use exactly the same program .

The Situation-Action Rules can be Learned

Note 7 shows how to learn the situation-action rules involved in new laws.

If-needed Demons are a Special Case of the Situation-Action Rules

If—needed demons are important since - they enable the simple abstractions
that make possible the more interesting matches. Thankfully, the if-needed
demons can be learned using the same methods that apply to other analogies.
If-needed demons are Just smaller. Note 8 supplies details and examples.

a

Patrick H. Winston 42 Verification

TESTING CONCLUSIONS USING
AN EXPERIENCE-DRIVEN VERIFIER

The situation-actions rules are a bit too eager to use the match. There
really is no need to be quite so sophomoric:

I The cause relationships in a known story suggest the right
relations to check and the right questions to ask.

Assuming that the cause relations in the known story are reasonable and are
reasonably complete, it makes sense to use them to check the validity of
makin~j conclusions about the situation being analyzed. If a particular
fact in a known story is Justified by various other facts, then the
corresponding fact in the situation being analyzed may have a si.ilar
justification .

The Cause Relations in Stories make it Possible to Check Conclusions

To be more precise , the fo llowing steps are taken In the current
implementation to check a fact in a given situation, given the cause and
cause-related slots in a known story:

• First , the fact in question may actually be in the situation being
analyzed . If so, no further action is needed.

• Second ,. the fact may correspond to one in the known story that has
a person in its DESIRED-BY slot. If so, ask if the corresponding
person in the situation has sufficient desire to cause the fact to
come to be.

I Third , the fact may correspond to one in the known story that has a
person in its CAUSED-BY slot. If so, ask if the corresponding
person in the situation causes the fact in the situation being
analyzed .

• Fourth , the fact may correspond to one in the known story that has
another fact in its CAUSED-BY slot. If so, try to check that other

- fact in the situation by recursion .

• Fifth , the fact may correspond to one in the known story that has
another fact in its REASON slot. If so, try to check by recursion.

• Sixth, repeat with the MOTIVE slot.

If the slots in the known story have more than one value, all must be
verified . If any PREVENTED-BY slots are encountered along the way, they

Patrick H. Winston 43 VerificatIon

are investigated as follows :

• If there is a person in the PREVENTED-BY ~lot, ask it the
corresponding’ person in the situation prevents the fact from coming
to be.

• If there is a fact in the PREVENTED-BY slot, check it by recursion.

Success in pursuing any of a fact’ s PREVENTED-BY values means the
corresponding fact in the given situation cannot be verified.

- To make use of all the cause-related rules, it is necessary to go
into a careful mode that generates a comment for • every slot—value
combination that does not already have one (with three exceptions). Three
slot are then automatically filled; FRAME, SLOT, and VALUE. The reason is
to have a way of getting to the frame , the slot , and the value for every
relation.

Furthermore , it is necessary to add some demons that tie things
together with cause relations. See Appendix 5 for the details.

To see how all this works out, consider the following version of a
Macbeth story:

(XB is ako story - part Macbeth-xb Duncan-xb Lady-flacbeth-xb
Macduff-xb.

Man has instance Macbeth-xb Duncan-xb Macduff-mb. Woman
has instance Lady-Macbeth-xb.

Macbeth -xb married-to Lady-Macbeth-xb. Lady-Macbeth-mb hq
greedy. Macduff-xb hq loyal.

As it stands, there is barely enough said to do an unambiguous match to
Macbeth , but given that a teacher insists, it makes sense to question the
validity of the rule asserting that the tragic figure should die.

Figure 8 shows the cause connections in Macbeth. The following
shows what the verifier does with them:

(CHECK ‘MACBETH -XB ‘HQ ‘DEAD ‘XB ‘MA)

Ma tch ing XB and MA

Does LADY-NACBETH-XB cause the MURDER slot of MACBETH-XB to
have DUNCAN-XB in it?

> NO (meaning the user does not know)

Does NACBETH-XB sufficiently desire the AKO slot of

Macbeth_..JLL........ ~,. dead

caused-by

Macduff kill Macbeth

reason

Macbe th -
murder

~~ Duncan

7 \çive

Lady-Macbeth ako
Macbeth king

desired-by

Macbeth

Figure 8: The cause connections in Macbeth . If Macbeth is matched with a -—

situation having no connections , then asking if the Macbeth person dies
leads to asking questions determined by the causes, reasons , motives, and
desires. The first question is about the Lady Macbeth person and the cause
of a murder. If the answer is unknown , the second question Is about the
Macbeth person and whether he desires to be king.)

Patrick H. Winston 45 Ver Ification

MACBETH-X8 to have KING in it?

> YES (assumed for illustration)

Evidently there is sufficient DESIRE for the AKO slot of
MACBETH-XB to have KING in it.

Evidently there is sufficient MOTIVE for the MURDER slot of
MACBET H-XB to have DUNCAN-XB in it.

Evidently there is sufficient REASON for the KILL slot of
MACDIJFF-XB to have PIACBETH-XB in it.

Evidently there is sufficient CAUSE for the IIQ slot of
MACBETH-XB to have DEAD in it.

(PIACBET H-X8 HQ DEAD] in XB is verified by the precedent
in MA

It makes sense .

Legal Situations ill ustrate the Need for Attention to Details of Cause

Dealing with legal precedent seems like a combination of situation
identification and cause verification . Since legal precedents are
carefully stated stories, they should .be susceptible to the identification
and verification methods already given.

Several legal situations were recorded to get a feel for what is
involved, particularly with respect to the verification issue. In
particular, two items of legal doctrine and two precedent-setting cases
were adapted from the minilegal domain used by Jeffery Meidman in his
thesis (7]. The actual input form for these is given in Appendix 6. Here
are approximations in ordinary English :

Assault: There is an assault if B apprehends contact from A and A intends
the apprehension.

Battery: There is a battery If A contacts B and A intends the contact.

Adams versus Zent: Adams intentionally knocked of f Zent’s glasses . It is
held that there is a battery because the facts indicate intentional
contact, as required by legal doctrine.

Smith versus Wesson : Smith pointed a rifle at Wesson to frighten hi.. The
rifle was not loaded , and it was therefore harmless. It is held that an

‘ assault has taken place even though the rifle was not loaded because Wesson

Patrick H. Winston - 46 Verif Ication

did not know it and had reason to be apprehensive .

Having recorded these , it is possible to deal , by doctrine and precedent,
with the following:

Guilty versus Innocent: Guilty wanted to kick Innocent and did.

Villain versus Victim: Villain pointed a pistol at Victim in order to
frighten him. The pistol was harmless toy. Villain furthermore knocked
off Victim’s hat. -

Now let us see what the system thinks about whether these are. cases of
assault and battery. The following scenarios are invoked:

(CHECK t~I ‘AKO ‘ASSAULT 61 AS)

Matching GUILTY-VS-INNOCENT and ASSAULT1

Does the APPREHEND slot of INNOCENT have (GUILTY CONTACT
INNOCENT) in it? -

> YES

Does the INTEND slot of GUILTY have (INNOCENT APPREHEND (
GUILTY CONTACT INNOCENT]] in it?

> YES

Evidently there is sufficient CAUSE for th.e AXO slot of
GUILTY-VS-INNOCENT to have ASSAULT in it.

(GUILTY-VS-INNOCENT AKO ASSAULT I in GUILTY-VS-INNOCENT is
verified by- the precedent in ASSAULT1

The situation , as described, left holes that had to be filled by asking.
To establish battery, however , only one question need be asked since KICK
establishes CONTACT by way of a demon:

- (CHECK 01 ‘AKO ‘BATTERY 6! BA)

Matching GUILTY-VS-INNOCENT and BATTERY1

It is known that the CONTACT slot of GUILTY has INNOCENT in
it. Does the INTEND slot of GUILTY have (GUILTY CONTACT

- INNOCENT 3 in it?

Pstri~k H. WInston 41 Verification

4 -

> YES

Evidently there is sufficient CAUSE for the AKO slot of
GUILTY-VS-INNOCENT to have BATTERY in it.

(GUILTY-VS-INNOCENT AKO BATTERY] in GUILTY-VS-INNOCENT is
verified by the precedent in BATTERY1

Now consider the harder case. Anticipating failure with direct match
against assault and battery , we try to deal instead with the questions that
would have been asked, starting with contact:

(CHECK ‘VILLAIN ‘CONTACT ‘VICTIM W SW)

Matching VILLAIN-VS-VICTIM and ADAMS-VS-ZENT

It is known that the KNOCK-OFF slot of VILLAIN has HAT-W
in it. I see HAT-W is a kind of CLOTHING

Evidently there is sufficient CAUSE for the CONTACT slot of
VILLAIN to have VICTIM in it.

(VILLAIN CONTACT VICTIM 3 in VILLAIN-VS-VICTIM is verified
-

- by the precedent in ADAMS-VS-ZEPJT

Next we deal with intention :

(CHECK ‘VILLAIN ‘INTEND ‘CONTACT-W W SW)

Matching VILLAIN-VS-VICTIM and ADANS-VS-ZENT

Does the INTEND slot of VILLAIN have (VILLAIN KNOCK-OFF
HAT-W] in i t?

-

> YES

Evidently there is sufficient CAUSE for the INTEND slot of
VILLAIN to have (VILLAIN CONTACT VICTIM 3 in it.

(VILLAIN INTEND (VILLAIN CONTACT VICTIM I I in VILLAIN-
VS-VICTIM is verIf ied by the precedent in ADAMS-VS-ZENT

(Next we deal with apprehension :

Patrick H. Winston 48 Verification

(CHECK ‘VICTIM ‘APPREHEND ‘CONTACT-W W AZ)

Pletching VILLAIN-VS-VICTIM and SPUTH-VS-WESSON

Does the NOT-KNOW slot of VICTIM have (PISTOL HQ HARMLESS
3 in it?

> YES (this, perhaps, is the most interesting question)

Evidently the KNOW slot of VICTIM is PREVENTED FROM having
(PISTOL HQ HARMLESS I in it. It is known that the
FRIGHTEN slot of VILLAIN has VICTIM in it.

Evidently there is sufficient CAUSE for the APPREHEND slot
of VICTIM to have (VILLAIN CONTACT VICTIM 3 in it.

(V ICTIM APPREHEND (VILLAIN CONTACT VI CTIM 3) in VILLAIN-
VS-VICTIM is verified by the precedent in SMITH-VS-WESSON

Finally, we see if the apprehension was intended:

(CHECK ‘VILLAIN ‘INTEND ‘APPREHEND-W W AZ) -

Matching VILLAIN-VS-VICTIM and SMITH-VS-WESSON

Does the INTEND slot of VILLAIN have (VILLAIN FRIGHTEN
VI CTIM 3 in it?

>YE S
-

Evidently there is sufficient CAUSE for the INTEND slot of
VILLAIN to have (VICTIM APPREHEND (VILLAIN CONTACT VICTIM
3 3 in it.

(VILLAIN INTEND (-VICTIM APPREHEND (VILLAIN CONTACT
VICTIM 3 3 3 in VILLAIN- VS-VICTIM is verified by the
precedent in SMITH-VS-WESSON

Having worked on the facts to make new, more abstract facts by precedent,
it is possible to return to the original questions:

(CHECK W ‘AXO ‘ASSAULT W AS)

Matching VILLAIN-VS-VICTIM and ASSAULT1

Patrick H. Winston 49 Verification

It is known that the APPREHEND slot of VICTIM has CONTACT-
W in it. It is known that the INTEND slot of VILLAI N has
APPREHEND-W in it.

E v i d e n t l y the re is sufficient CAUSE for the AXO slot of
VILLAIN-VS-VICTIM to have ASSAULT in it.

(VILLAIN-VS-VICTIM AKO ASSAULT 3 in VILLAIN-VS-VICTIM is
verified by the precedent in ASSAULT!

(CHECK W ‘AKO ‘BATTERY W BA)

Matching VILLAIN-VS-VICTIM and BATTERY 1 -

It is known that the CONTACT slot of VILLAIN has VICTIM in
it. It is known that the INTEND slot of VILLAIN has
CONTACT-VV in it.

-

Evidently there is sufficient CAUSE for the AKO slot of
VILLAIN-VS-VICTIM to have BATTERY in it.

(VILLAIN-VS-VICTIM AKO BATTERY] in VILLAIN-VS-VICTIM is
verified by the precedent in BATTERVI

The law case of V i l l a i n ver sus Victim illustrates several particularly
suggestive ideas. First that AKO relations can be the result of a
successful match . Second, that a situat ion may be analyzed by way of
analogy with several already known stories. And third , that the result is
a situation description that itself may become a useful part of the general
knowledge store after analysis augments it with cause links . See figure 9.

CONCLUSION: SIMPLE MF’ .HANISMS ENABLE LEARNING

This paper is about a set of ideas that enable learning to take place by
analogy in domains that adhere to certain principles , namely:

• Symbolic sufficiency.

I Description-determined similarity.

• Cause-determined importance .

ç I Historical continuity .

The most important of the ideas that make learning possible in such domains

- ~~~~~~~~~~~~~~ ,. - ~ --

-~ STORED KNOWL EDG E
1. Parts of given situation ~

are identified and given~~
-

situation is augmented.

—

~1_ J
GIV EN SITUAT iow

— — —

_ _ _
--

2. Given situ ation ~ 1identified an(augmented.
I

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C
Stored knowledge .

¶ Figure 9: The system bu~ 1ds on its own results. Identification and correct
reaction to part of a description enables further identification and
reaction .

Patrick H. Winston 51 ConclusIon

are these:

• Convnented-frames representation .

• Classification-exploiting hypothesizing.

• Cause-dominated matching.

U Frame-oriented , rule-based deduction .

• Experience-driven verification.

It is now clear that simple situations can be analyzed by attacking them
with the analogy process using stored things that lie all along the
spectrum from if-added demons to complex cases. Once analyzed, a situation
becomes eligible itself for use in analyzing newer , perhaps bigger
situations. Experience makes an analogy-making system smarter, or at least
more exper ienced .

ACKNOWLEDGMENTS

This paper was improved by discussions with Peter Hart , William B. Martin ,
Saul Amarel, Richard Brown, Jim Stansfield , Boris Katz, Charles Rich , Mark
Jeffery. G len Iba , Nargareta Hornell , and Karen Prendergast. The drawings
are by Karen Prendergast.

REFERENCES

I. Richard Henry Brown , “Use of Analogy to Achieve New Expertise,” Master’s
thesis, M .I.T. Artificial Intelligence Laboratory Technical Report No.
403, April 1977. -

2. John B. Carroll , Pä ter Daves , and Barry Richmond , Word Frequency Book,
Houghton-Mifflin and American Heritage Publishing Companies, New York ,
1971.

3. Thomas G. Evans , “A Heuristic Program to Solve Geometric Analogy
Problems,” PhD thesis , in Semantic Information Processing, edited by Marvin
Minsky, The M.I .T. Press, Cambridge , Massachusetts, 1968.

4. C. J. Filmore , “The Case for Case,” in Universals in Linguistic Theory,
edited by E. Bach and P. Harms , Holt , R inehar t , and Winsto n, New Yo rk ,

(

1968.

5. Douglas Lenat , “AN : An Artificial Intelligence Approach to Discovery in

~~~~ ,--.-~_ *. - - . -  -



Patrick I-i. WInston 52 References

Mathematics as Heuristic Search ,” PhD thesis, to be published in Randall
Davis and Douglas Lenat, Knowledge-Based -Systems in Artificial Intelligence,
McGraw-Hill, 1979.

6. William Martin , “Philosophical Foundations for a Linguistically Oriented
Semantic Network,” in preparation.

7. J. Neldman , -A preliminary Study in Computer-Aided Legal Analysis, PhD
thesis, M.I.T. Laboratory for Computer Science Technical Report No. MAC—
TR-l57, November , 1975. 

-

8. Marvin Minsky, “A Framework for Representing Knowledge,” in The
Psychology of Computer Vision, edited by Patrick Henry Winston, McGraw-Hill
Book Company, New York, 1975. —

9. J. Moore and Allen Newell, “How can Merlin Understand?” in Knowledge
and Cognition, edited by I.. Gregg, Lawrence Eribaum Associates, Potomac,
Maryland , 1974 .

10. C. K. Ogden, Basic English: International Second Language, Harcourt .
• Brace, and World , New York, 1968.

11. Chuck Rieger, “The Conveonsense Algorithm as a Basis for Computer Models
• of Human Memory, Inference, Belief, and Contextual Language

Comprehension,”University of Maryland , College Park , Department of Computer
Science Technical Report No. 373, 1975.

12. R. Bruce Roberts and Ira P. Goldstein, “The FRL Primer,” M.I.T.
Artificial Intelligence. Laboratory Memo No. 408, Ju’y 1977.

13. P. Bruce Roberts and Ira P. Goldstein, “The FRL Manual,” M.I.T.
Artificial Intelligence Laboratory Memo No. 409, June 1977.

14. Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray, David M. Johnson, and
Penny Boyes-Braem, “Besic Objects in Natural Categories,” Q.~sgnitive
Psychology, 8, 1976 .

15. Roger C. Schank, Conceptual Information Processing, North-Holland
Publishing Company, New York, 1975. 

-

16. Amos Tversky, “Features of Similarity,” Psychological Review, volume 84,
number 4 , July, 1977.

17. - Yor ick A. Wi lks, Grammar, Meaning, and the Machine Analysis of
Language, Routledge and Kegan Paul, London , 1972.

18. Patrick Henry Winston, “Learning Structural Descriptions from



- 

Patrick H. Winston 53 References

Examples,” Ph.D. thesis, in The Psychology of Computer Vision, edited by
Patrick Henry Winston , McGraw-Hill Book Company, New York, 1975.

19. Patrick Henry Winston, “Learning by Creating and Justifying Transfer
Frames,” Artificial Intelligence, Vol. 10, 1978, pp. 147-112.

( - 
-



55

APPENDIX 1

Note 1: There are A!ternatlves to Commented Slot-value Combinations

This note describes three alternative representations and why they were
rejected in favor of conunent slot-value combinations.

I - All slots specifying relations could be replaced by a universal
slot with a name like RELATION-SPECIFYING-FRAME. All relations
would be described by frames enumerated in this universal slot:

(CHARMING (RELATION-SPECIFYING-FRAME (FIND-Cl)))

(FIND-Cl (AKO FIND)
(AGEN T ( CHARMING))
(OBJECT (C INDERELLA))
( INSTRUMENT (SLIPPER-Cl)))

Such a representation is less perspicuous because it is not clear what
Prince Charming is related to or how by just looking at the CHARMING frame.

• Moreover the representation seems to make it more difficult to think how
one group of people could be matched with another. Using this alternative
strategy, correspondence has to be established between relation frames as
well between the people frames.

• Relation names could be replaced by the names of relation—
- describing frames:

( CHARMING (FIND-Cl (CINDERELLA)))

(FIND-Cl (AKO FIND)
(AGENT (CHARMING))
(OBJECT (C INDERELLA ))
(INSTRUMENT (SLIPPER-Cl)))

This representation is slightly more perspicuous than the universal slot
so lution since it is possible to see who Prince Charming is related to by
looking in the CHARMING frame. Still, it is not possible to see how the
Prince it related to Cinderella without going to the FIND-Cl frame.
Similarly, matching still seems to require extra work.

I Further description of a relation could be captured by using facets
other than the value facet:

(CHARMING (FIN’) (VALUE (CINDER ELLA))
(• (AGENT (CH ARMING ) )

- . 
- - (OBJECT (CINDERELLA)) ,~ ~~ ______

- 
~~!C~D1NG PAGE NOT FILMED

BLANK

- -  -- -



56

( INSTRUMENT (SLIPPER-Cl))))

Unfortunately anything in the. other facets would normally apply to all
values in the value facet. Moreover , it does not feel quite right to mix
supp lementary descr iption with the demons that are normally foun d in the
facets.

In con trast, using coimnented slots is perspicuous, does not interfere with
matchimg, and leaves the facets alone.



57

- t
Note 2: Transition Networks Define an Input Representation

frame name

AND, IS, HAS

FPFSV

FPFSV
slot name

AND FPFSVC

FPFSVCV

( FPFSV slot
value

I S

S

- i, 
C ] :i

FPFSVCV —

/

I
C.0”

FPFSUCV 
— 

FPFSVCV

The input translator can be described as a transition network . Most of the
labels on the arcs specify how the atoms in the input stream become
associated with associated with arguments to value and coament inserting
functions. Arcs with the labels ., (, 1~ and - determine how syntax guides
the association . The atoms AND, IS, and HAS are ignored. FPFSV means
place a value using the current associations. FPFSVCV means place a value
with a coment, again with the current associations.



58

RULE

rule name

IF

Parse a sentence , but replace frame with
a generated IF frame . Frame then goes )

in MATCHES slot of generated IF frame
and IF frame in the IF slot of rule

• 
frame .

THEN
Parse a sentence , but replace frame with
a generalized THE frame . Frame then
goes in MODIFIES slot of generated THEN
frame and THEN frame in the THEN slot of
rule frame.

END

0

The input translator for rules also can be described as a transition
network.

I
’ ’

)

~~~~ ~~~
i- - .-

~~
-
~c~S~

- 59

1~~

Note 3: The Matcher -works on Constraining Laws as well as on Stories

This note shows that the matcher works on situations and laws, as well as
on stor ies. The law used for illustra tion cons tra ins the water pressure
and water flow in a pipe . It is described is as follows:

PIPE-LAW is ako constraint - has part pressure-pi flow-pi
and resistance-pi - dependent-variable pressure-pi —
independent-variable flow-pi - multiplier resistance-pi.

Pressure-pi is ako water-pressure. Water-pressure is ako
pressure. Pressure is ako force, Flow-pi is ako water—
flow. Water-flow is ako flow. Resistance-pi is ako water—
resistance. Water-resistance is ako resistance.

Pressure-pi is proportional-to flow-pi (see proportional—
to-pu . Proportional-to-pi has multiplier resistance-pi.

• Matching a specific situation against this pipe law is like matching one
story against another. Consider Si, for example:

Si is ako situation - has part pressure-si flow-si and
(

resistance-si.

Pressure-si is ako water-pressure. Flow-si is ako water—
flow . Resistance-si is ako water-resistance.

The result is announced as follows by the matcher:

Matching P1 and Si

Score = 7. versus 10. and 7. Match is decisive -- 4. better
than next best.

The score is entirely dependent on the AKO slots. Both pressure-pi and
pressure-si are a kind of water pressure , pressure, and force. Flow—pi and
flow-si are a kind of water-flow and flow . And resistance-pi and
resistance-si are a kind of water-resistance and resistance.

In this first example , no use was made of the fact that water
pressure is proportional -to water flow. Such relations are critically
important, however , since relations between the parts of a situation are
often known before their types are established . Moreover, giving the *0
relations seems to be giving away too much .

In the following situation , S2 , the parts hnva no known types, but

(
it is handled anyway because a relation between the parts involved is
known :

- -I- - -
—-

~
1-— —.”- -

- - - -

60

82 is ako situation - has part pressure-sZ flow-sZ and
resistance-s2.

Pressure-sZ is proportional-to flow-s2 (see proportional—
to-s2] .

Proportional-to-s2 has multiplier resistance-s2.

The matcher gives the result as follows:

Matching P1 and 82

Score 3. versus 10. and 3. Match is decisive -- 1. better
than next best.

The score now depends entirely on the PROPORTIONAL-TO and MULTIPLIER slots.
Pressure-pi and pressure-s2 are proportional to flow-pi and flow-s2. A
demon attached to PROPORTIONAL-TO similarly established that flow-pi and
flow-s2 are proportional to pressure-pi and pressure-s2. And finally, the
coment frames PROPORTIONAL-TO-PI and PROPORTIONAL-TO-S2 have resistance-pi
and resistance-s2 in their MULTIPLIER slots.

Of course, if both relations and types are known, as in the
following situation ,- the results are even more likely to be correct. Since
83 is a situation with both a-kind-of and proportional—to information
known, the result is just the sum of the previous results:

Matching P1 and 83

Score = 10. versus 10. and 10. Match is decisive -- 6.
better than next best.

Here are the matching results. for all three situations:

SITUATION SCORE BETTER THAN NEXT BEST MATCH

Si (types only) 7 4

S2 (relations only) 3 1

83 (both) 10 6

Now in fact the match may be done on somewhat less related frame groups.
Suppose, for example, that one situation is an electrical one and it is to) —

be matched against the pipe law:

61

84 is ako situation - has part voltage-s4 currènt-s4 and
resistance-s4 .

Voltage-s4 is ako voltage. Voltage is ako force. Current-
s4 is ako electric-current. Electric-current is ako flow.
Resistance-s4 is ako electric-resistance. Electric-
resistance is ako resistance.

The result is:

Matching P1 and S4 - A

Score = 3. versus 10. and 6. Match is decisive -- 2. better
than next best.

The score is three for 84 rather than seven, as it was for the parallel SI,
because the AKO chains leading from the parts of 54 intersect those leading
from PIPE-LAW less than those leading from Si. Voltage-s4 is less like
pressure-pi than pressure-si is, and the same is true for curremt-54 and
resistance-s4 relative to flow-si and resistance-si.

(

Situations 35 and S6 parallel 82 and 83:

S5 is ako situation - has part voltage-s5 current—s5 - and
resistance-s5.

Voltage-s5 is proportional-to current-s5 (see proportional-
to-s5]. Proportional-to-s5 has multiplier resistance-s5.

Matching P1 and 85

Score 3. versus 10. and 3. Match is decisive -- I. better
than next best.

S6 is ako situation - has part voltage-s6 current-s6 and
resjstance-s6.

Voltage-s6 is ako voltage. Current-s6 is ako electric-
current. Resistance-s6 is ako electric-resistance.

- Voltage-s6 is proportional-to current-s6 (see proportional-
to-s63. Proportional-to-s6 has multiplier resistance—s6.

(Matching P1 and 86

62

Score 6. versus 10. and 9. Match is decisive -- 3. better
than next best.

Here is the sutmiary:

SITUATION SCORE BETTER THAN NEXT BEST MATCH

84 (types only) 3 2

55 (relations only) 3 1

S6 (both) 6 3

On the whole, the correspondence is not as solid or unambiguous, but the
correct correspondence is still found.

Note 4: Difficult Situations are Improved by Abstraction

This note shows how matching can be facilitated by using demons to do
abstraction. The pipe law and a tenuously related situation are used to
illustrate.

Suppo~e the following is given for P1 and a particular situation,
Dl:

*0 has inverse instance. Proportional-to has inverse
proportional-to. Increases-with has inverse increases-
with . Determined-by has inverse determined-by.

P1 is ako constraint - has part pressure-pi flow-pi and
resistance-pi.

Pressure-pi is ako water-pressure . Water-pressure is ako
pressure . Pressure is ako force. Flow-pi is ako water-
f low. Water-flow is ako flow. Resistance-pi is ako water-
resistance. Water-resistance is ako resistance. Pressure-
pi is proportional-to flow-pi (see proportional-to-pi].
Proportional-to-pi has multiplier resistance-pi.

Dl is ako situation - has part x-dl y-dl and z-dl.

X-d l cause y-di - determined-by y-di (see determined-by-
di]. Determined-by-di has parameter z-dl.

As they stand , these descriptions lead to the following frames, with P1 and
Di showing no correspondence whatsoever . The frames in Dl have no *0

-

~~~~~~~ 63

slots at all, and they have no other slots that correspond to slots in the
frames of P1.

(PRESSURE-PI (AKO (WATER-PRESSURE))
(PROPORTIONAL-TO (FLOW-PI (SEE (PROPORTIOP4AL-TO-PI)))))

(FLOW-PI (AKO (WATER-FLOW)) (PROPORTIONAL-TO (PRESSURE-PI)))
(RESISTANCE-PI (*0 (WATER-RESISTANCE)))
(PROPORTIONAL-TO-PI (MULTIPLIER (RESISTANCE-PI)))

(X-Dl (CAUSE (Y-Di)) (DETERMINED-BY (Y-D1 (SEE (DETERMIPJED-BY-D1)))))
(Y-D1 (DETERMINED-BY (X-DI)))
(Z-D1) -

(DETERMINED-BY-pi (PARAMETER (Z-D1)))

Still, it seems that someth ing should be done to make the match happen .
After all , PRESSURE-PI is known to be a kind of force, and since X-Dl
causes something, it also . is a kind of force, in a sense. Moreover,
PROPORTIONAL-TO is a stronger, more particular , less abstract form of
DETERMINED-BY , and there are indications that both RESISTANCE-PI and Z-D1
are both a kind of parameter.

At first, it might seem that awkward or complicated solutions are
required . It might seem that the matcher would have to be smarter, perhaps
made so by making it look into the *0 slots of the slots themselves.

Actually, there is an alternative that seems more natural and
• certainly is easy to effect. All that is necessary is to reassert the

facts with every demon in sight turned on. The demons will then deduce and
assert new facts in both the frames of P1 and Di. The new facts will create
a sort of con~non ground on which matching can suc~eed. The particular
demons that seem appropriate in this situation and ones like it are as
follows:

Proportional-to has if-added (fpfsv frame ‘increases-with
value).

Increases-with has if-added ( fpfsv frame ‘determined-by
value).

MUltiplier has if-added (fpfsv frame ‘parameter value).

Parameter has if-added (fpfsv value ‘ako ‘parameter).

Cause has if-added (fpfsv frame ‘eko ‘force).

The first three place new relations that are weaker forms of the ones that
parent them . In a sense th~ir placenuit represents a sort of abstraction( process. The last two place new items in *0 slots. - They make simple
deductions about what something is a kind of, given what it does.



64

I Demons make simple abstraction possible. Two situations can match
well after abstraction even if they do not match well as they
stand .

Now the same descriptions of P1 and Dl produce frames that do
produce a match : -

(PRESSURE-P I (*0 (WATER-PRESSURE))
(PROPORTIONAL-TO (FLOW-PI (SEE (PROPORTIONAL-TO-PI))))
(INCREASES-WITH (FLOW-PI))
(DETERMINED-BY (FLOW-PI)))

(FLOW-PI (AKO (WATER-FLOW))
(PROPORTIONAL-TO (PRESSURE-P 1))
(INCREASES-WITH (PRESSURE-PI))
(DETERMINED-BY (PRESSURE-P I ) ) )

(RESISTANCE-PI (AKO (WATER-RESISTANCE) (PARAMETER)))
(PROPORTIONAL-TO-PI (MULTIPLIER (RESISTANCE-PI))

(PARAMETER (RESISTANCE-PI)))

(X-Dl (CAUSE (Y-Di))
(AKO ( FORCE))
(DETERMINED-BY (Y-Dl (SEE (DETERMINED-BY-DIfl)))

(Y-Dl (DETERMINED-BY (X-D i)))
(Z-D1 (*0 (PARAMETER)))
(DETERMINED-BY-D i (PARAMETER (Z-DI)))

The actual result produced is as follows:

- Match ing Di and P1

Score = 4. versus 6. and 16. Match is decisive -- 1. better
than next best.

Note 5: Match can be Improved by Asking Questions

Suppose situation D2 is one in which nothing at all is known about the
parts:

D2 is ako situation - has part x-d2 y-d2 and z-dZ.

What can be done to match D2 against the pipe law, P1? One thing is to ask
.questions. The implemented program for this starts by asking if the parts
of the situation belong to certain of the class-es found by tracing out the
*0 paths originating from the parts of the description to be matched



65

against. An effort is made to suggest things that are as general as
possible , while still discriminating. To be precise, the steps in the
algorithm are as follows :

Trace out all AKO paths starting with the constraint’s parts. The
figure illustrates. Then note where each *0 path first collides with
another. Call these places the collision points. In the illustration ,
these are frames Cl , C2, and C3.

Next, pick one of the situation ’s parts . Follow the *0 paths
starting from it. Remember any places where these paths run into the paths
that start from the constraint’s parts. Call these places the top points.
If none are found by following the *0 paths from the situation ’s parts ,
use the places where the AKO paths from the constraint’s parts terminate .
In the illustration , these top points are frames Ti and 12.

Finally , move clown from these top points until the P1(0 tree
branches for the last time. This will be at some of the collision points
noted before. In the illustration , these are frames Cl , C2, and C3 for
situation frame X and frames C2 and C3 for Y.

The things to ask about or experiment with are just below the
collision points jI~’st found. In the illustration , these are frames El , E2,
E3, and E4 for X and frames E2, E3, and E4 for Y. -

Here is how it works in the simple 02 case :

Should I ask about classes?
> YES
Which of the following is X-D2 a kind of?
FORCE FLOW RESISTANCE PARAMETER or NIL
) FORCE
Which of the fo llowing is Y-D2 a kind of?
FORCE FLOW RESISTANCE PARAMETER or NIL
) FLOW
Which of the following is Z-D2 a kind of?
FORCE FLOW RESISTANCE PARAMETER or NIL
) PARAMETER
You made improvements to X-D2 Y-D2 Z-D2

Score = 3. versus 3. and 16.
Match is decisive -- 2. better than next best.
((PRESSURE-PI X-D2) (FLOW-PI Y-D2) (RESISTANCE-PI Z-D2))

It is easy to think of ways to make this process smarter. For example, if
the matcher noted those parts that match well , then the *0-type questions
could be limited to those parts that match poorly.

It is a~ 
- 

~-tb~e that a smarter system would not need to ask the( teacher about *0 relations. Instead , the smarter system could itself
activate procedures or do experiments that answer the classification



66

Ti

Cl

El

12

C2

E2

C3

E3 E4

1
x V A B C D

Proposing AKO connections so as to improve match . An effort is made to ask
the most general question that will help . The assumption is that the .ost
general question is easiest, although it may not be , of course. As shown, )
questions are asked about what X and Y are. El , E2, E3, and El are
proposed for X; U, E3, and E4 are proposed for Y.



67

questions raised. If it is useful to know if X-D2 is a kind of FORCE, the
sensible thing to do would be to look first for the sorts of relationships
forces enter into. This makes the decision about what something is into an
identification , matching, conclusion , and verification problem, thus
recursing into the whole system.

If working with classes does not help, then the implemented system
works with relations. The process is simpler: First, find the slots that
are used in the constraint but not in the situation. Then, ask if these
slots hold anything in any of the parts of the situation.

Working again with D2, the following happens, this time without complete
success:

Should I ask about classes?
> NO
Then I will ask about relations!
I want to ask if certain slots have
values in any of these: -

X-D2 Y-D2 Z-D2
When signaled give a frame and value or nil.
What does PROPORTIONAL-TO hold between?
) (X-D2 Y-D2)
> NIL
What does INCREASES-WITH hold between?
)- NIL
What does DETERMINED-BY hold between? 

-

> NIL
What does AKO hold between?
> (Z-D2 PARAMETER)
New instances of these relations were placed:
AKO PROPORTIONAL-TO

Score = 7. versus 7. and 16. -

Match is indecisive .
Should I ask about classes?
)

Again it is easy to think of more sophisticated ways to decide what to ask
about. And again , a smarter system would recurse into itself, not just
ask . -

Note 6: Both Specific and General Laws can be Discovered

( This note shows how to learn the desciptive-frame part of new laws using
pairs of analogies or pairs of known laws. To begin, suppose a second



- 66

electrical problem is solved using the same water-oriented analogy that was
used for X2. Then there will be two similar situation frames, X2 and a new
one , say Y2:

(X2 (AKO (SITUATION) (CONSTRAINT (SUGGESTED-BY (PIPE-LAW))))
( PART (VOLTA GE-X2) ( CURRENT- X2) (RESISTANC E-X2))
(DEPENDENT-VARIABLE (VOLTAGE-X2 (SUGGESTED-BY (PIPE-LAW))))
(INDEPENDENT-VARIABLE (CIJRRENT-X2 (SUGGESTED-BY (PIPE-LAW))))
(MULTIPLIER (RESISTANCE-X2 (SUGGESTED-BY (PIPE-LAW)))))

(Y2 (*0 (SITUATION) (CONSTRAINT (SUGGESTED-BY (PIPE-LAW))))
(PART (VOLTAGE-Y2) (CURRENT-Y2) (RESISTANCE-Y2)) -

(DEPENDENT-VARIABLE (VOLTAGE-Y2 (SUGGESTED-BY (PIPE-LAW))))
(INDEPENDENT-VARIABLE (CURRENT-Y2 (SUGGESTED-BY (PIPE-LAW))))
(MULTIPLIER (RESISTANCE-Y2 (SUGGESTED-BY (PIPE-LAW)))))

Of course, these two frames and their parts are supersimilar and easy to
match up. Once they are matched , it is possible to perform a merging
operation that creates a constellation of new frames, one for each for the
linked pairs produced by the match . Here is the result, given two things:
first that X2 and Y2 are given a CONSTRAINED--BY slot with PIPE-LAW in it;
and that both have parts described like those in S4:

I jus t  made a new law named LAW!
The parts look like this:
( LAW! ( AKO ( PIPE-LAW))

( PART (FRMEI) (FRAME2 ) ( FRAEIE3))
( DEPENDENT-VARIABLE ( FRAME 1))
(INDEPENDENT-VARIABLE (FRAME2))
(MULTIPLIER (FR.AME3)))

( FRAME1 ( PART-OF (LAW1)) (.AKO (VOLTAGE )))
(FRAME2 (PART-OF (LAW1)) (AKO (ELECTRIC-CURRENT)))
(FRAIIE3 (PART-OF (LAWJ)) (AKO (ELECTRIC-RESISTANCE)))

Note that the descriptions of LAW! and its parts are much like what Ohm ’s
law would be like , except that LAW! is a kind of PIPE-LAW , rather than
CONSTRAINT. The appearance of PIPE-LAW insures access to RULE-PI, thus
making the operational part of the new constraint functionally equivalent
to Ohm ’s law. Thus the merge operation has invented Ohm ’s Law by using two
examples in which electric problems were solved using water knowledge!

The merge involves these details:

• The matcher matches two groups, each of- which consists of a
situation frame and its parts. This produces a set of linked
frames.

U All the slot-value combinations that are conmion to two linked



69

frames are copied into the new frame that represents them. If the
two parts of a linked pair are found in the same slot of another
linked pair , the relationship is preserved in the copy.

• The AKO slot is treated specially. The MO slots of two linked
frames start off trees of *0-related frames. The PlO slot of the
new frame that represents the linked frames is filled with those

- frames found where the two trees intersect. 
-

I Some bookkeeping is done . SITUATION is removed from the PLO tiot
- of the frame representing the new law. The values in the

CONSTRAINED-BY slots of the situations are moved to the PlO slot of
the new law. The CONSTRAINED-BY slot in the new law, if any, is
then removed entirely.

Having done all this, electric problems can now be solved by using LAW1
more easily than by using PIPE-LAW . This is because the more electrically
familiar things jn LAW! give the matcher easier going. Recall that the
parts of X2 matched those in PIPE-LAW with a score of three. They match
the parts in LAW1 with a score of six.

This development has shown how to make a new, specific law in one
domain by repeated analogy to an old law in another domain. It is also
possible to generalize two similar laws from two distinct domains.
Suppose, for example, that a teacher suggests that there is something
useful to be had by merging the newly acquired law, LAW1, with the PIPE-LAW
from which it was derived:

(PIPE-LAW (AKO (CONSTRAINT)) -

(PART (PRESSURE-Pt) (FLOW-Pt) (RESISTANCE-PI))
(DEPENDENT-VARIABLE ( PRESSURE-PI))
(INDEPENDENT-VARIABLE (FLOW-PI))
(MULTIPLIER (RESISTANCE-PI)))

(LAW1 (PLO (Y2) (X2))
(PART (FRAME1) (FRAME2) (FRME3))
(DEPENDENT-VARIABLE ( FRAME!))
(INDEPENDENT-VARIABLE (FRAME2))
(MULTIPLIER (FRAME3)))

After copying the old laws into the AKO slot of the new one and eliminating
redundancy in that slot, the new law and its parts look like this:

I just made a new law named LAWZ
The parts look like this:
(LAW2 (AKO (LAWI))

( - (PART (FRANE4) (FRAPIE5) (FRAMEb))
(DEPENDENT-VARIABLE (FRAIIE4))



70

(INDEPENDENT-VARIABLE (FRAME5))
(MUL T IPLIER (FRAPI E6)))

(FR.AME4 (PART-OF (LAW2)) (PlO ( FORCE)))
(FRAMES (PART-OF (LAW2)) (*0 (FLOW)))
(FRAME6 (PART-OF (LAW2)) (*0 (RESISTANCE)))

This new law, LAW2, gives access to the same rule, RULE-PI, as before . The
things involved, however, are more general than the things in PIPE—LAW or
LAW! .

Note 7: The Situation-Action Rules can be Learned

This note shows how to learn the situation-action rules involved in new
laws using pairs of analogies or pairs of known laws. There is a simple
implemented algorithm based on two assumptions that may or may not be
reasonable:

• First, that it is possible to get a situation description that
contains only the slots and values that are critical to prediction.

This may cone from a spoon-feeding teacher. Alternatively, it may
come from intersecting two versions of a situation that come from a
slightly more Socratic teacher. Algorithms - for doing this

- intersecting have been described just above.

• Second, that the things that are to end up as predictions are - .
distinguishable.

For daveloping constraints, it is assumed that the teacher marks
- conclusions by placing conveent frames that have CONCLUSION in their

HQ slots. For learning rules from stories it is assumed that the
things that happen at the end of a story are as good as conclusions
and that they also should be predicted. They are assumed to be
marked by coimnent frames that have END in their TIME slots.

To begin , the algorithm makes a list of the situation and its
parts. Potentially each element of the list can lead to an IF frame , a
ThEN frame, or both . If one of these frames has a slot-value combination
that is not marked END or CONCLUSION, then an IF frame is formed and that
slot-value combination ends up in it. Similarly, if a frame does have a ’
slot-value combination marked with END or CONCLUSION, a ThEN frame is
formed.

The first time a situation part is encountered, it is made into a
variable with a > symbol. Each subsequent time one is encountered, it is —

made into a variable with a < symbol.
The following scenario illustrates these points and some other,



71

I

saallei details. 
- 

The intent is to develop a rule suitable for attachment
to the Othello story. It begins with a statement that is assumed given by
the teacher or computed by intersecting situations named by a teacher:

SAMPLE - is ako story - part Othello Desdamona - tragic-
figure Othello.

Othello married-to De;damona - kill Desdamona Othello [see
curtain].

Curtain time end.

The results are as follows, as reported by the algorithm:

IF frames are:
(IF45 (MATCHES (SITUATION))

(AKO (STORY))
(TRAGIC-FIGURE (>OTHELLO)))

(IF46 ( MATCHES (<OTHELLO))
(MARRIED-TO (>DESDAP!ONA))
(KILL (<DESDAPIONA)))

( THEN are :
(THEN32 (MODIFiES (<OTHELLO)) (KILL ((OTHELLO)))

4 Rule is:
(RULEZ4 (IF (IF45) (IF46)) (ThEN (THEN3Z)))

Note 8: It-needed Demons are a Special Case of the Situation-Action Ru!es

Consider the optimistic demon that says a man loves a woman if he marries
her and vice versa. The ordinary if-needed demon expressing this idea
looks like this:

Marry has if-needed (fpfsv frame t love value).

Let us see how this too can be learned as a special case of the general
ffiethod. First the teacher supplies a situation and draws attention to it:

LOVE is ako fragment - part 10-1 10-2 marry-b - part! b - i
- part2 lo-2.

Person instance lo-l lo-2. Lo-1 marry 10-2 [see marry-b ].
Lo-l Jove 10-2 (so” love-b ]. Love-b hq conc1us~on.

(.. Applying the method for converting the situation into a rule leads to the

4

- ~
_
_ _.-‘ _ ii~

_
~~~~ - - - -*


72 -

)

following result:

IF frames are:
(IF? (MATCHES (SITUATiON)) -

(*0 (FRAGMENT))
(PARTI ~~L0-1))
(PART2 (>LO-2)))

(IF8 (MATCHES (<1.0-i)) (*0 (PERSON)) (MARRY (<1.0—2)))
(IF9 (MATCHES (<LO-2)) (*0 (PERSON)))

ThEN frames are:
(THEPJB (MODIFIES (<LO-i)) (LOVE (<LO-2)))

Rule is:
-
-

(RIJLE3 (IF (IF?) (IFS) (ff9)) (THEN (THEN8)))

Having learned this, the following situation illustrates its use:

SI is ako situation - part si-i si-2 •arry-si.

Person instance si-i si-2. Si-! marry si-2 (see marry-si].

Plow we are ready to work RULE3:

(PREDICT ‘SI ‘LOVE)

Score = 3. versus 3. and 5.
Match is decisive -- I. better than next best.
The situation has been expanded by LOVE
The expanded story looks like this:
(SI (AKO (SITUATION) (FRAGMENT (SUGGESTED-BY (LOVE))))

(PART (SI-!) (51-2))
(PART1 (SI-i (SUGGESTED-BY (LOVE))))
(PART2 (81-2 (SUGGESTED-BY (LOVE)))))

Rule RULE3 produced new information.
We win -- prediction made.
(SI-i (PART-OF (SI))

(MO (PERSON))
(MARRY (SI-2))
(LOVE (81-2 (INSERTED-BY-RULE (RULE3)))))

So we have the ability to match and react to entire plots or tiny fragments
or anything in between. The if-needed demon is a compiled special case.

L

Appendix Patrick H. Winston

APPENDIX 2
(COMMENT -*-text-*-

This is the general story f i le —- some details may differ from versions
used to illustrate points in the body of the paper —- slavish attention to
consistent usage was avoided on the ground the programs should be robust
enough to deal with some variety and some error —- much of the initial
stuff sets up demons and establishes the AKO tree —— the first story is MA
shor t for Macbeth — —

END OF COMMENT)

S has par t MA HA OT JU TA OH HG PY CI AD. SH has par t MA HA OT JU TA.

(setq s (fgfsve ‘s ‘part)) (setq sh (fgfsvs ‘sh ‘par t)) (setq fv—matchtypes
‘(person scene prop))

HA similar -to MA. 01 similar -to JU HG CI OH. PY simi lar—to HG CI. TA
similar —to Cl .

JU similar—to OT MA. MA similar -to JU HA. HG similar—to PY OT. OH
similar—to UT. Cl similar —to TA PY UT.

I nverse has if—added (fpfsv va l ue ‘inverse frame) and (fpfsv frame ‘if —
added (list ‘fpfsv ‘value (list ‘quote value) ‘frame)).

AKO has inverse instance. Par t has i nverse part—of. Cause has inverse
caused—by. Method has i nverse purpose. After has inverse before.

Meet has i nverse meet. Marry has i nverse marry. Marry has if—added (FPFSV
frame ‘married —to va l ue). Married—to has i nverse married—to. Sibling has
i nverse sibling. Parent has inverse child. Friend—of has i nverse friend.-
of.

Person has instance man and woman. Man has instance father son boy
gentleman and bastard. Woman has instance mother daughter girl l ady hag
and bitch. Shrew is ako bitch.

Soldier has instance general co l onel.

Rule r has instance Empor.er Empress King Queen Noble. Man has instance
Ernporer King Pr i nce Noble. Woman has instance Empress Queen Pr i ncess.

(comment the follow i ng is for abstraction experiment onl y Ki l l has if—added
(fpfsv frame ‘hur t va l ue) Hur t has if—added (fpfsv frame ‘has—co nflict —with
va l ue) comment end of temporary stuff)

(comment the follo w ing is for cause-driven match exper i ment only) Cause has
if—added (fpfsv frame ‘hq ‘important) (fpfsv value ‘hq ‘important) (fpfsv
(fgfsvcr frame slot value ‘see) ‘hq ‘ i mportant). Prevent has i f—added
(fpfsv frar~e ‘hcl ‘iir p~rtant) (fpfsv value ‘hq ‘important) (fp f sv (fg f sv c r

(frame slot va l ue ‘see) ‘h q ‘important). Motive has if—added (fpf sv frame
‘hq ‘important) (fpfsv va l ue ‘hq ‘important) (fpfsv (fgfsvcr frame slot

-- ---- --

Appendix 74 Patrick H. Winston

va l ue ‘see) ‘hq ‘important). Reason has if—added (fpfsv frame ‘hq
‘important) (fpfsv value ‘hq ‘important) (fpfsv (fgfsvcr frame slot va l ue
‘see) ‘hq ‘important). Desire has if-added (fpfsv frame ‘hq ‘important)
(fpfsv value ‘hq ‘important) (fpfsv (f gfsvcr frame slot value ‘see) ‘hq
‘important).

Murder has if—added (fpfsvcr frame ‘hq ‘ev il ‘because ‘(person murders))
(fpfsv (fgfsvcr frame ‘murder va l ue ‘see) ‘cause (fgfsvcr frame ‘hq ‘ev i l
‘see)).

Murder has if—a dded (fpfsv frame ‘ki l l value) (fpfsv (fgfsvcr frame ‘murder
va lue ‘see) ‘ cause (f g f s v c r f r ame ‘ki l l value ‘see)).

Ki l l has if—ad d ed (fpfsv va l ue ‘hq ‘dead) (fpfsv (fgfsvcr frame ‘ki l l value
‘see) ‘cause (fgfsvcr value ‘hq ‘dead ‘see)). (comment end of temporary
stuff)

Stronger—than has i nverse weaker—than. Murder has i f—added (fpfsvcr frame
‘k i l l value ‘because ‘(murder asserted)). Murder has if—added (fpfsvcr
frame ‘hq ‘evil ‘because ‘(person murders)). Ki l l has i f—added (fpfsvcr
va l ue ‘hq ‘dead ‘because (l i s t f rame ‘k ill value)).

Hq has if—added (cond ((memq value ‘(cruel))
(fpfsvcr frame ‘hq ‘evil ‘because

(list frame ‘hq va l ue)))
((memq value ‘(loya l honest))
(fpfsvcr frame ‘hq ‘good ‘because

(l ist frame ‘hq va l ue)))).

Ako has if-added (constrain).

MA is ako story — par t Macbeth Lady—macbeth Duncan Macduff Wierd—sisters —

subpar t heath—scene murder—scene-ma battle-ma.

MA has trag ic — fi gure Macbeth — rule rule-ma.

Macbeth is ako noble (see ako-ma-1) king [see ako-ma--2] — hq happy [see hq—
ma— i] — married —to Lady—macbeth. Ako-ma-2 after ako—ma—i ,

Lady—macbeth is ako woman — hq greedy ambitious. Duncan is ako king.
Macduff is ako noble — hq loyal angry. Wierd-si sters is ako hag group — hq
old ugl y wierd - number 3.

Heath-scene is ako scene — before murder-scene-ma. Murder—scene-ma is ako
scene — before battle -ma. Battle-ma is ako scene.

W ierd—sisters speak—to Macbeth (see speak-to-ma] — predict ako-ma—2 (see
predict -ma] kill -ma [see predict -ma). Speak-to-ma content predict—ma —

time heath-scene.

Lady—macbeth persuade Macbeth (see persuade-ma] - cause murder—ma (see)
cause—ma] . Persuade-ma act murder—ma. Cause-ma method persuade—ma ,

Appendix Patr i ck H. Winston
75

Macbeth murder Duncan (see murder—ma] - desire ako-ma-2. Murder—ma has
coagent Lady—macbeth — motive ako-ma—2 - instrument knife — time murder—
scene-ma.

Macbeth hq unhappy (see hq-ma-2]. Hq-ma-2 after hq-ma-1. Lady—macbeth hq
dead.

Macduff k i l l Macbeth (see kill — ma] . Kill-ma reason murder—ma — time
battle-ma.

RULE Rul e-ma IF Situation has trag i c—figure >flacbeth. THEN <Macbeth hq
unhappy and dead. END

HA is ako story — part Hamlet Ghost Claudius Gertrude Laertes.

Hamlet is ako pr i nce — hq unhappy [see hq—ha-i] — parent Ghost Gertrude.
Hq-ha-l caused-by hq-ha-2.

Ghost is ako king — hq dead (see hq-ha-2) — s ibling Claudius — married—to
Gertrude (see marr i ed—to-ha—i]. Married-to—ha-i before hq—ha—2 .

Clau dius is ako king [see ako—ha] — married—to Gertrude (see married—to—ha—
2). Marrie d—to— ha—2 after marr i ed—to-ha-i.

Gertrude is ako queen. Laertes is ako man.

Claud i us murder Ghost [see murder-ha]. Murder-ha motive ako—ha — cause
order-ha.

Ghost order Hamlet (see order—ha], Order-ha act ki ll —C l audius.

Cla udius persuade Laertes (see persuade-ha] - cause kill—Hamlet (see cause—
ha). Persuade—ha act kill — Hamlet. Cause-ha method Persuade—ha.

• Ge r t r u d e hq unhappy — k i l l Gertrude (see kill-Gertrude) , Kill—Gertrude
instrument po i sen.

Laertes k i l l Hamlet (see k i l l — H a m l e t) . K i l l — H a m l e t instrument sword.

Hamlet k i l l Laertes [see k i l l—Laer tes) Claud ius [see k i l l — C laudius) . K i l l —
Laertes caused-by k i l l — H a m l e t — instrument sword. K i l l — C laudius caused—by
Ghost - instrument sword.

01 is ako story — par t Othe l lo Desdamona (ago Cass io .

Ot hello is ako Moor general and man - hq weak foolish. Oesdamona is ako
woman — hq honest. (ago is ako man - hq crue l ambitious. Cassio is ako
man — hq l oya l weak alcoholic.

Othello love Desdamona — marry Oesdamona. Desdamona l ove Othello.

(
lago speak-to Othe l lo (see speak-to-ot] . Speak-to-ot ako l ie — content
love-ot . lago persuade othe l lo (see persuade—ot i — cause jea lous—of — ot

Appendix 76 Patrick H. Winston

)

(see cause—ot]. Persuade-ot method speak-to-at - relation jealous—of—ot.
Cause-at method persuade-at — motive hate-at help-at. Desdamona love l ago
(see l ove-at). Love-ot hq false.

OtheHo jealous-of Cassio (see jea l ous-of-at] - help (ago (see help—at] —

hate Cass o [see hate-at).

Jea l ous—o f—at cause hate-at k ill —ot ,
-

Othello cause hq—ot . Cassia hq dead (see hq-ot].

Othello k i l l Desdamona (see kill—at] and Othe ll o (see kill —at] .

JU is aka story — par t Caesar Brutus Antony Cassius — subpar t Ides—o f—march
Funeral Battle -at— philippi.

Caesar is ako general emporer — hq ambitious foolish. Brutus is ako man —
hq honest unhappy. Antony is aka man - hq l oyal. Cassius is ako man — hq
thin.

I des-of—march is ako scene - l ocation senate — before funeral. Funeral is
ako scene — before battle-at—phi lippi. Battle -at-phi lipp i is ako scene.

Cass ius hate Caesar — per suade Brutus [see persuade—ju] — cause murder—
Caesar [see cause—juL Persuade-ju act murder—Caesar . Cause—ju method
per suade-ju.

Brutus love Rome — k i l l Caesar (see murder-Caesar). Cassius murder Caesar
(see murder-Caesar]. Murder—Caesar instrument knife — time ides—of—march.

Antony lo ve Caesar — speak—to people (see speak—ta—ju) - attack Brutus (see
attac k—jul Cassius (see attack-ju]. Speak-to—ju cause attack—ju time
funeral. Attack —ju time battle —a t -phi lippi.

Brutus attack Antony (see attack—ju], Cassius attack Antony (see attack—
ju].

Brutus k i l l Brutus (see k i l l — j u — 2] .

Cassius ki l l Cassius (see ki ll—ju—2) .

Ki ll -ju—2 time batt le- at—p hilippi.

TA is ako story — par t Petruchio Kathar i na Bianca Lucentio.

Petruchio is ako man — hq strong smart. Kathar i na is ako shrew — hq rich
masochist (see hq—ta). Lucentio is ako student man. Bianca is ako woman —

sibling Kathar i na.

Petruchio marry Kathar ina - forbid Kather i na (see forbid—ta] - prevent eat—
ta (see prevent—ta] s leep—ta (see prevent-ta] . Prevent-ta method forbid—ta)
— motive l ove—ta. Forbid-ta act eat—ta sleep-ta.

Appendix
77 Patrick H. Winston

Katharina eat * [see eat-ta] - sleep * (see sleep-ta) — love Petruchio (see
love—ta). Love-ta caused-by hq—ta prevent-ta.

Petruchio control Kathar i na (see control-ta-i]. Control—ta— i caused—by
love—ta — hq strong.

Bianca l ove Lucent io — marry Lucentio . Lucentio love Bianca — control
B ianca (see control—ta—2]. Contro l—ta-2 hq weak.

Control-t a-i stronger—than control—ta-2.

OH is ako story — par t Nora Torvald Krogstad Christina — subpar t letter—dh.

Nora is ako woman — hq sensitive proud — friend—of Christina - married—to
Torvald.

Torvald is ako man — hq crude i.eak. Krogstacl is ako man — hq cruel.
Christina is ako woman — hq goad.

Letter—dh is ako letter prop.

Torvald love Nora - help Christina (see he l p-dh] — hate Krogstad (see hate—
dh] — hur t Krogstad [see hurt-dh]. He l p-dh motive hurt—dh.

Krogstad prevent he l p—dh (see prevent-dh-i] hurt-dh (see prevent—d h—l l —

threaten Nora [see threaten-dh] - give letter -dh [see give-dh3 . Prevent—
dh-1 method threaten-dh. Threaten-dh act give-dh . Give-dh destination
larva Id .

Christina prevent give-dh (see prevent-dh—2) — marry Krogstad [see marry—
dh). Prevent-clh-2 method marry-dh — hq failed.

Torvald attack Nora (see attack-dh). Attack-dh caused—by give—dh letter—
dh.

Nora l eave Torvald (see l eave-dh]. Leave-dh caused—by attack—dh.

HG is ako story - par t Hedda George Lovberg Elvsted — subpar t p is to l—hg
manuscript -hg.

Hedda is ako woman - hq proud beautiful. George is ako man — hq d u l l ,
Lovberg is ako man — hq smart. Elvsted is ako woman - hq dull ugl y.

Pistol — hg is ako pistol prop.

Manuscript—hg is ako manuscript prop.

Hedda marry George - hate George.

George ,-iant ako-hcj - ako professor (see ako-hg] - jealous-of Lovberg.

Lovberg l ove Hedda - write manuscript -hg (see write-hg] — lose manuscr ipt—
hg.

Append ix 78 Patrick H. Winston

Elvsted help Lovberçj (see he l p-hg] - control Lovberg (see control—hg—i) .
Hel p-hg act write-hg.

Hedda hate Elvsted (see hate-hg]. Hate-hg caused-by contro l —h g—i want—hg.

Hedda want control—hg-2 (see want-hg] - contro l Lovberg (see contro l —hg—2).

Hedda per suade Lovberg (see persuade-hg] - cause destroy-hg (see cause—hg) .
Cause-hg mot i ve contro l-hg-2 — method persuade-hg.

Lovberg destroy manuscript—hg (see destroy-hg) — k i l l Lovberg (see k i l l — h g —
2] . Hedda cause k i l l—h g-2 . Ki l l-hg-2 hq fa i led — instrument p is to l—hg.

Hedda ki l l Hedda (see ki ll -hg — i] . Ki ll -hg — i instrument p istol— hg.

PY is ako story — part Eliza Higgens Picker i ng and Freddy.

E l iza is ako g irl beautiful - — hq proud stubborn sensit ive. Hi ggens is ako
professor man — hq smar t crude (see hq-py-1) - friend-of Picker i ng.
Picker i ng is ako gentleman co l one l - hq wise old proper — friend—o f
Higgens. Freddy is ako man - hq poor young foolish.

Higgens teach Eliza (see teach-py] - help Eliza (see help-py]. Teach-pg
content English. He l p—pg method teach-py . Higgens hur t Eliza (see hurt—

4 py] — love Eli za [see Sove—py-1). Hurt-pg caused—by hq-py-1. Love—pg-i hq
strange.

Picker i ng help Eliza.

E l iza is ako l ady (see ako-py). Hi ggens cause ako—py [see cause-py].
Cause-pg method teach-py.

E l i z a love Hi ggens (see love-py-2) . Love-py-2 caused-by help—pg.

EHza leave Higgins [see l eave—py) - marry Freddy (see marry-py] — hq
unhappy [see hq-py- 2] . Hi ggens hq unhappy [see hq-py— 2] .

Hurt—pg cause leave-pg marry-pg. Marry-pg cause hq-py-2.

CI is ako story - par t Cindy Charming Godmother Stepmother — subpar t
godmother-meeting ball foot—search g lass-slipper — cindere ll a Cind y —

charming charming — rule ru e-ci.

Cindy is ako servant g irl — hq beautiful sweet unhappg. Charming is alco
prince — hq beautiful. Godmother is ako fairy and woman — hq wise old and
kind. Stepmother is ako bitch - hq cruel.

Godmother-meeting is ako scene - before ball. Ball is ako ammusement scene
— before foot—search. Foot-search is ako scene.

Glass-slipper is ako prop and shoe.

Appendix Patrick H. Winston

Step—mother hates Cind y.

Godmother help Cindy (see hei p-ci] - give dress (see g ive-ci) coach (see
g ive—cl) . Help-cl act give-cl — motive attend-cl — time godmother—meeting.

Cindy attend ball (see attend-cl]. Attend-c i time ball. Cindy meet
Charming (see meet—ci) — love Charming. Meet—c l time ball.

Charming l ove Cindy — lose Cindy.

Charming find Cindy (see find-cl]. Find-ci instrument g lass-slipper — time
foot-search.

Cindy marry Charming — hq happy.

RULE Rule-cl IF S i tua t ion has c indere l la >c - charming >p. THEN <c marry
<p - hq happy. END

AD is ako story - part God Devi l Adam Eve - subpart apple-feast ev i c t i on
evil—apple.

God is ako spirit — hq good strong. Sp irit is ako person. Devil is ako
sp irit — hq bad strong cruel. Adam is ako man - hq happy. Eve is ako
woman — hq happy foolish.

Apple -feast is ako scenB - before eviction. Eviction is ako scene.

Evil—apple is ako apple prop. Apple is ako fruit. God forbid Adam (see
forbid-ad] . Forbid-ad act eat—ad - hq failed (see hq—ad].

Devil persuade Eve (see persuade-ad-i]. Persuade-ad—i act persuade-ad—2.
Eve persuade Adam [see persuade-ad-2]. Persuade-ad—2 act eat—ad.

Adam eat evil —app le (see eat-ad].

God forbid eat-ad [see forbid-ad] — move Adam (see move-ad] Eve (see move—
ad] .

Adam eat evi I —apple (see eat—ad]. Eat—ad time app l e—feast.

God pun i sh Adam (see punish-ad) Eve (see pun i sh-ad). Pun i sh—ad reason hq—
ad eat—ad - act move-ad.

God move Adam (see move—ad) Eve (see move—ad]. Move—ad source Paradise —

dest ination Outer—darkness — time eviction.

(frfsv ‘ako ‘if—added ‘(constrain))

- ~~~~~~ r- -
— -

A ppendix 80 Patrick H. Winston

APP ENDIX 3
(COMMENT -*- text-*-

This is the mechanical —e lectrica l problem file —-

END OF COMMENT)

(setq base (setq ibase 18))

Inverse has if—a dded (fpfsv value ‘inverse frame) (fpfsv frame ‘if—added
(list ‘ fpfsv ‘value (list ‘quote va l ue) ‘frame)) (fpfsv va l ue ‘ i f —

added
(I i st ‘ fpfsv ‘va l ue (list ‘quote frame) ‘frame)).

AKO has inverse instance. Part has i nverse part—of. Cause has inverse
caused—by. Proportional —t o has i nverse proportional —to.

Related —to has inverse related -to. Derivitive has ir’~erse integral.
Mathematical —i nverse has i nverse mathematical — inverse.

AKO has if-added (mapc ‘(lambda (e) (f pfsv frame ‘related—to e))
(de le te frame (fg fsvs va lue ‘ i ns tance))) .

(setq e ~el ectrica l—s i tuat i on—group)

Electr ical—s ituation —g roup has par t resi stor—s ituation capac itor—~ .t at ion
inductor —s ituation.

-

Resistor —s ituation has part resistance conductance res i stor—vo it aç~
resistor —cur rent. Resistor — vo l tage proportional —to resistor -current ‘see
pro po rt iona l—to—r— 1] . Resistor —cur rent proportional —to res istor—v c.itage
[see proport ional-to- r-2] . Proport ional—to- r-1 constant resistance.

P r o po r t i o na l— t o - r — 2 constant conductance. Resistance m a t h e m a t i c a l — i n v e r s e
conductance.

Capacitor—situation has par t capacitance capac i tor-vo lta~,e capac i tor—
current. Capacitor-curre nt proportiona l-to- d erivit iv e -o f capacitor—voltage
(see proportional—to —c] . Proportional —to-c constant capacitance.

i nductor-situation has par t i nductance i nductor-voltage inductcr—current.
Inductor—voltage proportiona l-to—de r ‘itive -o f i nductor-current (see
proportional —to— I] . Proportional -to— I c3nstant inth-rtance.

(setq m ‘mechanical —s ituation —group)

Mech~nica i -situat ion — g r oup has par t damper -situation spr i n g— s i tu -~tionmoving-mass-s i tua t ion .

Damp er— situation has part b 1-over-b force-on-dampe r damper -velocity.
Force —o n—da m per p ropor t iona l —to damper—ve loc i t y (see p ropo r t i o na l— t o —d— 1].
Damper-velocity proportional—to force-or-dan~per [see prop ortiona l—to- d-- 2] .)
Proporti ori al—to—d- .1 constant b. Proporti ona l-to— d-2 constar~t 1 D/er—b . B
mathematical -inverse 1-over-b.

- -
~‘~- --c~ - - -

A ppendix 81 Patrick H. Winston

Spr i ng—situation has part k 1—over—k force-on—spr i ng spring -position
spr i ng—ve l oc i ty. Force-on—spr i ng proportional -to spr i ng—position (see
proportional—to —si). Spr i ng—position proportional —to force-on—spr i ng (see
proportiona —to—s2]. SprirTg-ve l oc i ty proportiona l-to—de riviti ve—o f force—
on—spr i ng (see proport ional-to—s3]. Proportional—to-si constant Ic.
Proportiona l-to-s2 constant 1—over-k. Proportional-to-s3 constant 1—over—
k. K mathematical —in verse 1—over-k.

Moving —mass —s ituation has part mass force—on—mass mass—ve l ocity. Force—on—
mass proportional —to—deriv itive—of mass—ve l ocity (see proportion al—to—m] .
Proport ional- to— rn constant m.

Voltage has instance resistor -voltage capac i tor—voltage i nductor—vo ltage.
Current has instance resistor-current capac i tor—current inductor—current.
Constant has instance resistance conductance capacitance inductance.

Force has instance force—on-damper force-on-spring force-on—mass. Ve l oc i ty
has instance damper-ve l ocity spr i ng-ve locity mass -velocity. Constant has
instance b i—over—b k 1—over—k in.

M~ipeucIIx 82 ra~rIc K ,- . winst on

APPENDIX 4
These are the results of hypothesizing the i dentity of all the stories in
the story fi l e . the story file itself constitutes the set of possiblities.

In MA the following parts are prom i nent: 6. MACBETH 6. LADY-MACBETH 6.
WIERO-SISTERS 4. MACDUFF 3. OUNCAN

The f o l l o w ing s to r ies come to mind: 35.9 MA 13.9 HA 8.1 JU 5.1 OT 5.1 TA
5.1 OH 6.1 HG 6.1 PY 5.1 CI 5.1 AD

In HA the fol lowing parts are prominent: 3. CLAUD1US 8. GHOST 6. GERTRUDE
5. HAMLET 4. LAERTES

The following stories come to mind: 31.1 HA 22.6 MA 13.4 JU 8.9 CI 6.4 01
6.4 TA 6.4 OH 6.4 HG 6 ,4 PY 6.4 AD

in OT the f o l l o w i n g parts are prom inent: ii. OTHELLO 6. DESOAMONA 6. IAGO
3. CASSIO

The f o l l o w i n g s to r ies come to mind: 25.4 01 13,7 JU 8.9 PY 5.2 MA 5.2 HA
5.2 TA 5.2 OH 5.2 HG 5.2 CI 5.2 AD

I n JU the follow i ng parts are prom i nent: 9. CASSIUS 6. ANTONY 5. BRUTUS 3.
CAESAR

The follow i ng stories come to m ind: 11.1 JU 7.1 01 5.6 PY 5.6 NA 5.6 HA
4.6 TA 4.6 OH 4.6 HG 4.6 CI 4.6 AD

In TA the following parts are prom i nent: 9. KATHARINA 7. PETRUCHIO 6.
BIANCA 6. LUCENTIO

The follow i ng stories come to mind: 25.2 TA 10.2 CI 5.7 MA 5.7 HA 5.7 01
6.7 OH 5.7 HG 5.7 PY 5.7 AD 4.0 JU

In OH the fo l low ing parts are prominent: 9. TORVALD 6. NORA 6. KROGSTAD 5.
CHRISTINA

The follow i ng stories come to mind: 5.3 flA 5.3 HA 5.3 01 5.3 TA 5.3 OH 5.3
HG 6.3 PY 5.3 CI 6.3 AD 4.1 JU

In HG the fol low ing parts are prom inent: 11. HEDDA 8. LOVBERG 7. GEORGE 5.
EL VS TED

The follo w i ng stories come to mind: 9.8 HG 9.8 PY 6.3 MA 6.3 HA 6.3 01 6.3
TA 6.3 OH 6.3 CI 6.3 AD 4.5 JU

In PY the f o l l o w ing parts are prominent: 9. HIGGENS 7. ELIZA S. PICKERING
S. FREDDY

The follow i ng stories come to m ind: 38.9 PY 9.7 HG 8.7 CI 6.9 OT 6.1 JU
5.2 MA 6.2 HA S.2 TA 5.2 OH 5.2 AD ~~~~~~~~

Ifl CI the fo l lowing parts are prom i nent: 9. CHARMING 8. CINDY S. GODMOTHER

- Appendix 83 Patrick H. Winston

3. STEPMOTHER

The foHow i ng stories come to mind: 28.1 CI 9.6 HA 9.1 PY 6.6 TA 5.1 MA
. 5.1 OT S.1 OH 5.1 HG S.1 AO 3.4 JU

In AD the fo l lowing parts are prom inent: 6. G0O 4. DEVIL 4. ADAM 4. EVE

The following stories come to mind: 12.6 AD 2.6 MA 2.6 HA 2.6 OT 2.6 TA
2.6 OH 2.6 HG 2.6 PY 2.6 CI 2,2 JU

(

- - - - - -~~

—----— —-... -...-~ - -~ - -

— .~.-
,-- - -

Appen dix
84 l—’at ric k H. Winston

Appendix 5
(COMMENT -*-text-*-

Th is is the version of Macbeth used to check a conclusion in a matching
situation —- the free var i able FV-CAREFUL turns on careful mode in wh i ch
all slot—value combin at ions get comments that point back to the frame s lo t
and value

END OF COMMENT)

(setq fv-matchtypes ‘(man person scene prop))

Inverse has if—added (fpfsv va l ue ‘inve’~se frame) and (fpfsv frame ‘if—
added (list ‘fpfsv ‘va l ue (list ‘quote value) ‘frame)).

AKO has inverse instance. Part has inverse part-of. Cause has i nverse
caused—by. Desire has i nverse desired-by . Method has inverse purpose.
Afte r has i nverse before.

Meet has inverse meet. Marry has i nverse marry. Marry has if—added (FPFSV
frame ‘married -to va l ue). Married -to has inverse married—to. Sibling has
inverse sibling. Paren t has i nverse child. Friend—of has i nverse friend—
of.

Person has instance man and woman. Man has instance father son boy
gentleman and bastard. Woman has instance mother daughter girl lady hag
and bitch. Shrew is ako bit ch.

Soldier has instance general co l onel .

Ru l er has instance Emporer Empress King Queen Noble. Nan has instance
Emporer King Pr i nce Noble. Woman has instance Empress Queen Pr i ncess.

Stronger—than has i nverse weaker-than.

Murder has if—added (fpfsvcr frame ‘hq ‘evil ‘beca use ‘ (person murders)).

Murder has if—added (fpfsv frame ‘ ki l l value)

(fpfsv (f gfsvcr frame ‘murder value ‘see)
‘cause
(f gfsvcr frame ‘ki l l value ‘see)).

K i l l has i f—added (fpfsv value hq ‘dead)

(fpfsv (fgfsvcr frame ‘ki l l va l ue ‘see)
‘cause
(fgfsvcr va l ue ‘hq ‘dead ‘see)).

Hq has i f—a dd ed (cond ((mernq value ‘ (cruel))
(fpfsvcr frame ‘hq ‘evil ‘because

(list frame ‘hq va l ue)))
((rnemq value ‘(loya l honest))

Appendix Patr i ck H. Winston

C
(fpfsvcr frame hq good ‘because

(list frame ‘hq va l ue)))).

• (setq fv—carefu l t)

h A is ako story — par t Macbeth Lady-macbeth Ouncan Macduff — subpart heath—
scene murder—scene-m a ba t t l e - ma .

Macbeth is ako noble [see ako—ma-1] king [see ako-ma-2] — hq happy (see hq—
ma— i) — married—to Lacly-m.acbeth. Ako-ma—2 after ako—ma— 1,

Lady—macbeth is ako woman - hq greedy ambitious. Duncan is ako king.
Macduff is ako noble — hq l oya l angry.

Heath—scene is ako scene — before murder-scene-ma , Murder—scene-ma is ako
scene — before battle -ma. Battle -ma is ako scene.

Lady-macbeth pursuade Macbeth [see pursuade-ma] — cause murder—ma [see
cause—ma] . Pursuade—ma act murder-ma. Cause-ma method pursuade-ma.

Macbeth murder Duncan (see murder-ma] - desire ako—ma-2 [see desire-ma)
Murder—ma has coagent Lady-macbeth - mot ive ako-ma—2 — instrument kn i fe —
t I me murder—scene-ma.

Macbeth hq unhappy (see hq-ma—2] . Hq—ma-2 after hq-ma-i. Lady—macbeth hq
(dead.

Macduff k i l l Macbeth (see kill —ma] . Kill-ma reason murder—ma — time
battle —ma.

XB is ako story — part Macbeth-xb Ouncan-xb Lady-Macbeth—xb hlacduff—xb.

Man has instance Macbeth—xb Ouncan-xb Macduff-xb . Woman has instance Lady—
flacbeth-xb. -

Macbeth—xb married-to Lady-tlacbeth-xb. Ladg-Macbeth-xb hq greedy.
Macduff—xb hq l oyal.

L (

Appendix 86 Patrick H. Winston

APPENDIX 6
(COMMENT -*-text-*-

This is Me l dman ’s law file — - -

ENO OF COMMENT)

(setq fv—matchtypes ‘ (person weapon legal-term))

Inverse has i f—added (fpfsv va l ue ‘inverse frame) and (fp fsv frame ‘ i f —
added (list ‘fpfsv ‘va l ue (l ist ‘quote value) ‘frame)).

AKO has inverse instance. Part has inverse part—of. Cause has i nverse
caused—by. Prevent has i nverse prevented—by. Method has i nverse purpose.
After has i nverse before.

Person has instance man and woman. han has instance father son boy
gentleman and bastard. Woman has instance mother daughter girl l ady hag
and bitch.

Firearm is ako weapon. Legal-term has instance contact apprehend intend.

Hq has if—added (cond ((mernq va l ue ‘(cruel))
(fpfsvcr frame ‘hq ‘evil ‘because

(list frame ‘hq va l ue)))
((mem q va l ue ‘(loyal honest))
(fpfsvcr frame ‘hq ‘good ‘because

(list frame ‘hq va l ue)))).

Punch has if—ad d ed (fcause ‘hit). Hit has if-added (fcause ‘contact).
Kick has if-added (fcause ‘contact).

Want has if—added (fcause ‘intend) .

Slot has instance apprehend contact intend.

Ako has i ’-added (constrain) .

(setq fv—ca reful t)

(setq as ‘assau lt l)

Assaulti is ako doctrine assault (see ako-as] — ha~ par t Al A2 apprehend—as
intend—as.

-

Person instance al a2. Apprehend—as is ako apprehend.

Al contact A2 (see contact—as]. A2 apprehend contact—as (see apprehend—
as). Al intend apprehend—as (see intend-as], Ako—as caused-by apprehend—
as intend-as.

(setq ha ‘batter yl)

S

Appendix
87 Patr ick H. Winston

Batteryl is ako doctrine battery (see ako-ba) — has par t Bi B2 contact—ba
intend—ha.

• Person instance hi b2. Contact-ba is ako contact.

Bi contact b2 (see contact—ba] . 81 intend contact—ba [see intend—ba) .
Ako—ha caused—by contact-ba intend-ba.

(setq SW ‘Adams-vs-Zent)

Adams-vs-Zent is ako case — par t Adams Zent contact—sw glasses—sw —
defendant Adams — p la in t i f Zent — rule rule-sw.

Rule ru le—sw if situation has efendant >d — plair i tif >p. then <d contact
<p. end

Person instance Adams Zent. Contact-sw is ako contact.

Adams contact Zent (see contact—sw) — knock—off glasses—sw (see kno c k—off —
sw) — intend contact-sw (see intend-sw).

Knock—off— sw cause contact-sw. Adams intend knock-off—sw (see intend—sw—
2]. i ntend-sw-2 cause intend—sw. Zent wear glasses—sw. Glasses—sw is ako
cloth ing [see ako—ew), Ako—sw cause contact—sw.

((setq \Z ‘Sm i th—vs—Wesson)

Smith—vs—Wesson has part Smith Wesson contact—az apprehend—az rifle —

• defend ant Sm i th - plaintif Wesson — act contact-az — rule rule-az.

Rule rule—az if situation has defendant >d — plaintif >p — act >a. then <p
apprehend <a. end

Person has instance Smith Wesson. Apprehend-az is ako apprehend. Intend
has instance intend—az- i intend-az—2.

Sm ith contact Wesson (see contact-az].

Sm ith point rifle [see point—az). Point—az target l4esson (see target—az).

Sm ith intend apprehend—az [see intend-az-2]. Intend—az—2 caused-by i ntend—
az—i. Smith intend fri ghten-az (see intend-az-i].

Sm i th fri ghten Wesson (see frighten-az] . Fr i ghten—az caused—by ako—az
point-az target-az.

Rifle ako firearm (see ako-azi - hq un l oaded [see hq—az—i) harmless (See
hq—az). Hq-.az-l cause hq—az.

Wesson apprehend contact-az [see apprehend-az]. Wesson know hq—az (see
know—az). Knoii-a— prevent fri ghten-a:. Wesson not-know hq—az (see not—

(know—az). Not—know—az p r e v e n t kno w -a z — cause fri ghten—az (see cause—azL
Cause—az hq enablement. Apprehend-az caused—by fri ghten—az.

S

Appendix 88 Patrick H. Winston

)

(f r f s v ‘ako ‘if—ad ded ‘(constrain))

(setq VV ‘Vill ain—vs—Victim)

V i l l a in—vs— V ictim is ako case - par t Villain Victim hat—vv pistol contact—
vv apprehend—vv.

Contact—vv is ako contact. Apprehend-vv- is ako apprehend.

Person instance Vil l a i n Vict im.

V i l l a i n contact Vi ctim (see contact—vv], Victim apprehend contact—vv (see
apprehend-vv].

Vi l l a i n knock—off hat—vv (see knock—off-vv]. V ictim wear hat—vv. Hat—vv
is ako hat. Hat is ako clothin g. -

V il l a i n point pistol (see point-vv). Pistol ako firearm toy — hq harmless.
Point—vv target Victim — motive frighten—vv . Vill ain frighten Victim (see
fri ghten—vv].

(setq GI ‘Guilty—vs—innocent)

Guilty—vs—Innocent is ako case — has par t Guilty Innocent.)
Person instance Guilty I nnocent.

Guilty kick I nnocent (see kick—gi) — want kick—gi .

p

4

I

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ __ . _ . _ _
._,-~~~~~~~~~~~~~~~~~~~~~~~~~

--.-

